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Introduction
To
Precalculus Mathematics

Dear Students,

Any regular calculus course at the university level will require that students know certain basic
mathematics stuffs as a prerequisite. These basic stuffs will not be taught in those calculus courses.
Instead, a calculus course will straightaway get into its nitty-gritty subject matter. The instructors of
calculus courses will take it that students already know these basic stuffs prior to signing up for their
calculus classes.

However, not all students would have studied these basic mathematics stuffs when they sign up
for a calculus course. Hence, the purpose of this course is to prepare students with these basic stuffs for
the more rigorous calculus classes that they may be required to take or perhaps just for the fun of taking
a calculus course. The contents in this book are chosen based on what we know to be stuffs that calculus
instructors assume students in their classes would already have studied and what we believe will be
helpful to you when you embark on your actual calculus course.

Here is an analogy of why this precalculus course is important especially to students who did not
take enough mathematics classes while in school. Taking a calculus course is like taking classes on learning
how to run. However, in order to be able to learn how to run, first of all, you need to know how to walk.
Not knowing enough basic mathematics is not knowing how to walk properly where calculus is concerned.
Therefore, this precalculus mathematics course aims to teach you how to walk and be able to confidently
take a course on learning how to run, or to confidently take a calculus course.

Sincerely,
Dr Husam Khader
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1.1 Real Numbers

Real numbers are numbers that exist. Below is a chart detailing the relationship between the types of
real numbers.

Real numbers

Irrational numbers Rational numbers

Integers Non-integer
fractions

Negative integers Whole numbers

Natural numbers Zero

1. Natural numbers (symbol N)
N ={1,2,3,4,}

2. Whole numbers (symbol W)
w=1{0,1,23,4,-}

3. Integers (symbol 2)
Z=4{-,-4,-3,-2,-1,0,1,2,3,4,---}

4, Rational numbers (symbol Q)

These are numbers that can be written as exact fractions. For example,

05=2 1-0333333...=0.3

2’ 3

Rational numbers are ratios of integers, i.e. p where m and n are integers and n # 0.



Important: Division by zero is not allowed, because

1. %is undefinedifm # 0

And 2. g is indeterminate. Its limit value depends on the situation it is defined.

All rational numbers can be written as decimals with either

1. Repeating patterns of decimal digits

Examples: §= 0.33333333 - = 0.3

g = 3.142857142857142857 --- = 3.142857

Or 2. Exact terminating decimal representations

Examples: §= 0.500000 ... = 0.5

gz 0.3750000 ... = 0.375

Conversely, all decimal numbers with either repeating representations of decimal digits or exact
terminating decimal representations can be written as exact fractions.

Note: All integers are rational numbers. If g is an integer, thena = %

Examples: 5= %

Converting a decimal representation of a rational number into its equivalent fraction

Example: If the decimal number terminates. For example, let us write 0.875 in its equivalent
fraction.

We can write that

0.875
0.875 = I

We see that there are three digits to the last non-zero digit in the decimals. Therefore, as we move the
decimal point rightwards in the numerator, we will write three zeroes after the 1 in the denominator to
obtain



0.875 — 0875 875
' 1 1000

Another example: If the decimal digits are repeating. For example, let us write 3.652652652 - =

3.652 in its equivalent fraction.

This process is a bit complicated but nonetheless interesting. The first step is to let this number be
represented by x. In this example, we let

x = 3.652652652 -+

We see that there are 3 digits in each repeating group. So let us multiply both sides by 1,000, i.e. 1
followed by three zeroes. We will have

1000x = 3652.652652652 ---
If we subtract as follows,

1000x = 3652.652652652 -
—x = —3.652652652 -+

=
999x = 3649
=
_3649 _ 652
*= 7999 T °999

And Another example: Let us write 0.571428571428571428--- = 0.571428 in its equivalent fraction.
Letx = 0.571428571428571428 ---.
We see there are six digits in each repeating group, so we multiply both sides by 1,000,000 to obtain

1,000,000x = 571428.571428571428571428 ---
And we subtract

1,000,000x = 571428.571428571428571428 ---
—x = —0.571428571428571428 ---

999,999x = 571428

571428 4
*=999999 ~ 7




5. Irrational numbers (symbol I)
These are numbers that cannot be written as exact fractions. For example,
m = 3.141592653589793 -
e = 2.718281828459 ---
V3 = 1.73205080756887 ---
Irrational numbers have decimal digits that
1. do not follow a repetitive pattern.

And 2. continue infinitely.

Properties of Real Numbers
1. Commutative Properties
i a+b=b+a
Example: 24+3=3+2=5
ii. ab = ba

Example: 3 Xx5=5x%x3 =15

N

Associative Properties

iii. (a+b)+c=a+(b+c)

Example: (2+3)+5
= 5 +5=10
OR
2+ (33+5)
=2+ 8 =10

iv. (ab)c = a(bc)

Example: (2x3)x5
= 6 x5=30
OR
2%x(3x%x5)
=2x 15 =30



3. Distributive Property

V. a(b +c)
Example: 2%X(3+5)
=2X3+2X%X5
= 6 + 10 =16
OR
2x(3+45)
=2X 8 =16

Addition and Subtraction
Note: A subtraction is the addition of a negative number.
Example: 3-5
=3+ (-5)=-2
Multiplication and Division

Note: A division is the multiplication of the reciprocal of a divisor

Example: 5+2= ;

=— We multiply by the reciprocal of the divisor

Properties of Negatives

1. (-Da=-a

2. —(—a)=a

3. (—a)b = —ab = a(-b)
4, (—a)(=b) =ab

5. —(a+b)=(—a)+(-b)=—a—-b



6. —(a—-b)=—a+b=b—-a

Properties of Fractions

a c ac .
1 EXE_E' provided b #+ 0 and d # 0.
= d d
2 b2 52858 =% providedb #£0,c # 0andd # 0.
i b d b c bc
a c atc . . .
3 > + = provided b # 0. Add or subtract numerators with common denominators.
a c ad bc adxbc .
4 Eiﬁ_ﬁiﬁ_ " , provided b # 0 and d + 0.
iiiii=£ib—yii=w , providedx # 0,y # 0andz # 0.
Xy~ xz~ yz Xyz = xyz = xyz Xyz

We create common denominators in order to be able to add or subtract the numerators.

a ac .
5. P provided b # 0 and ¢ # 0.

Real Number Line

The arrow on the real number line indicates the positive direction. We never draw an arrow head in the
negative direction.

One-to-one correspondence:

1. Every real number corresponds to one point on the real number line.

2. Every point on the real number line corresponds to one real number.

Every number on the real number line is called the coordinate of that point.

The number zero on the real number line is called the origin. It is a neutral number, i.e. it is neither
positive nor negative. When we say non-negative numbers, we include both zero as well as positive
numbers. Likewise, when we say non-positive numbers, we include both zero and negative numbers.

When we say positive numbers, we do not include zero. And when we say negative numbers, we do not
include zero.



Order of Real Numbers

If @ and b are two real numbers and that a < b (or b > a). The position of a is to the left of b (or the
position of b is to the right of a) on the real number line. In summary, on the number line,

Number at left < Number at right

or
Number at right > Number at left

10



Intervals on the Real Number Line

Interval Notation Inequality Notation Graph
f ] X
[a, b] {x/a<x<b} a b
Or o o > x
a b
¢ ) X
(a,b) {x/a<x<b} a b
Or
X
a b
f ) X
[a, b) {x/a<x<b} a b
Or . X
a b
¢ ] X
(a, b] {x/a<x<b} a b
Or ° X
a b
: > X
[a, ) {x/x=a} a
Or . > x
a
( >x
(a, ) {x/x>a} a
Or ~
> X
a
< } X
(—o0,b] {x /x < b} b
Or < ° X
b
< } X
(—,b) {x /x < b} b
Oor _
< X
b
(—o0, ) {x /) —00 <x < 0} < > X
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Unions and Intervals of Sets and Intervals
Given two sets, S and T, then
1. UnionofSand T
SuT
is the set of all elements in S orin Tor in both Sand T.
2. Intersectionof Sand T
SNT
is the set of all elements common only to both Sand T.
Examples:
1. Find the indicated setif A ={1,2,3,4,5,6,7}and B = {2, 4, 6, 8}
(@) AuB =1{1,2,3,4,5,6,7,8}

(b) AN B ={2,4,6}

2. (=2,00U(-1,1) = (-21)

3. (=20n(-11)=(-1,0)

Definition of Absolute Value
If o is a real number, then the absolute value of a is

| l_{a, ifa=0
al= —a, ifa<0

Examples:
1. |5] =5

In this case, a = 5, which is a non-negative number. Therefore, |5| = 5.

12
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2. |-5] =5

In this case, a = —5, which is a negative number. Therefore, |-5| = —(=5) = 5.
3. —|—6| =—6
4. WwhatisZh
;, if x>0
% = < Indeterminate, if x =0
—-X .
- ifx<0
1, if x>0
= % = <{ Indeterminate, if x =20
-1, ifx<0

Properties of Absolute Values

If o and b are two real numbers, then

1. la| =0
2. |—al = |al
3. lab| = |a||b|
al _ la| .
4, |Z| =l provided b # 0

Distance between two points on the real number line

If a and b are two real numbers, then the distance between g and b is
|b —al =l|a— bl

Example: Find the distance between —25 and 13.
|-25—13| =|-38| =38

Oor |13 —(=25)| = |13 + 25| = |38| = 38

13



SUMMARY

Algebraic Expression

Terminologies:

Terms: The parts in an expression separated by the addition (+) or subtraction (-) operators.

Factors: The parts in a term that multiply or divide each other.

BEDMAS Rule

When we simplify or solve a mathematics expression, the following operators follow the BEDMAS
hierarchy.

B — Brackets

E — Exponent

D — Division

M — Multiplication
A — Addition

S — Subtraction

Note: Addition and Subtraction have the same hierarchy, i.e. either one could be performed first.

Examples:

1. 2X3+4+2
= 6 + 2
= 8

2. 2+3)x(4-2)
= 5 X 2
= 10

3 5 — 32
=5-9
= —4

4, 5+ (=3)2
=5+ 9
= 14

5. 5+8+2x%x3
=5+4x%x3
=5+12=17

14



Rules of Algebra

What is it called?

Property

Subtraction

a—b=a+(-b)

Division

% =a (%) , provided b # 0

Commutative property of addition

a+b=b+a

Commutative property of multiplication

ab = ba

Associative property of addition

(a+b)+c=a+(b+c)

Associative property of multiplication

(ab)c = a(bc)

Distributive property

a(b+c)=ab+ac
(a+b)(c+d) =ac+ad+ bc+bd

What is it called? Property
Additive identity property a+0=a
Multiplicative identity property axXx1l=a

Additive inverse property

at+(-a)=a—-a=0

Multiplicative inverse property

axlzgzl, provideda # 0
a a

Some rules of multiplication:

1. (+ve) X (+ve) = +ve
2. (+ve) X (—ve) = —ve
3. (—ve) X (+ve) = —ve
4. (—ve) X (—ve) = +ve

Properties of negation and equality
1. (-Da=-a

2. —(—a)=a

3. (—a)b = —ab = a(-b)

4, (—a)(=b) =ab

5. —(a+b)=(—a)+(-b)=—-a—-b

6. Ifa=b,thena+c=>b+c. Conversely,ifat+c=>b +c, thena =>b.

7. If a = b, then ac = bc. However, the converse is not necessarily true. If ac = bc, thena =»b
only if ¢ # 0.

15




Properties of zero:

1 at0=a

2 ax0=

3. %: 0, provideda # 0

4, %is undefined ifa # 0

5. %is indeterminate.

6. Zero-Factor property: Ifab = 0,thena =0o0rb = 0.

Properties and Operations of fractions:

a [
1. E = E S ad = be
a —a a
2 PSR TS
—-a a
3 %%
a ac .
4. Pl provided c # 0
a c atc . . . .
5 5 + 5= provided b # 0. Add or subtract with like denominators.
a c ad bc ad+tbc . . . .
6. 5 + il + vd = bd provided b # 0 and d # 0. We create like denominators in order to
be able to add or subtract.
a c ac .
7. ;xg—ﬁ, provided b # 0 and d + 0.
8. a.,c_a,4_a
b d b c bc

General Rule of Thumb when treating both sides of an equation: Be fair to both sides.

1. If we add a value to one side of an equation, we have to add the same value to the other side.
Example: a=bh
= at+c=b+c

16



2. If we subtract a value from one side of an equation, we have to subtract the same value from the
other side.

Example: a=b»b
= a—d=b—-d

3. If we multiply a value to one side of an equation, we have to multiply the same value to the other
side.
Example: a=>»b
= ac = bc
4, If we divide one side of an equation by a non-zero value, we have to divide the other side by the
same value.
Example: a=hb
b .
= %:;, provided ¢ # 0

General Rule of Thumb when moving a term from one side of the equation to the other.
When we move a term, we change its sign, i.e. positive becomes negative and negative becomes positive.

1. a+b=c
= a=c—b>b

Proof: a+b=c
= a+b—b=c—-b

= a=c—b
2. a—b=c
= a=c+b

Proof: a—b=c

= a—b+b=c+b

= a=c+b

General Rule of Thumb when moving a factor from one side of the equation to the other.

When we move a factor from one side of the equation to the other, if it was originally in the numerator,
we move it to the denominator at the other side. And if it was originally in the denominator, we move it

to the numerator at the other side.

1. =
b

17



Proof:

Proof:

[

SRS}

(S S
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1.2 Exponents and Radicals

Exponential Notation

If a is a real number and n is a positive integer, then we define

axaxXaX--xXa=a"

- J
Y

n factors of a

We say that a is the base

and that n is the exponent.

Examples:

1. 3x3=32=9

2. 5x5x5=53=125

3. (-2)x (-2)x (-2) =(-2)3=-8

4. (—=3) x (=3) x (-3) x (-3) = (-3)* =81

Properties of Exponents

1. ama" = gmtn
Proof: a™a™ = am™ X a™
=(axaxaxaXx--xXa)X(@axaxaxX-Xa)
N RN ]
Y Y
m factors of a n factors of a

=aXaXaXaxXxaX-:--Xa
- /

N
(m + n) factors of a

= gmtn

19



2. Z_n =a™™™, provided a # 0.
m factors of a
.am BXBXEXUX XA
Proof: P
n factors of a
=aXaX--Xa

%(_J

(m — n) factors of a

m-n
Zero Exponent

3. a® =1, provided a # 0.

Proof: From the above property 2, we can have

an

an

n—-n

=a
n factors of a
a™  exXuxexe X
Also, an T eXEXuX X,
n factors of a
=1
Combining the above two results, we have

an _ 0 _ .
w=a =1, provided a # 0.
Note: 00 isindeterminate.

Negative Exponent
4, a = %, provided a # 0.

Proof: a™™ =q%™

aO

= From property 2.
1

=— From property 3.

Note: Similarly, we can show that



More Laws of Exponents

5. (ab)™ = a™p™

Proof: (ab)™ =&b X ab X ab X --- X ab

h'd
m factors of ab

=aXaXaX-XaXbXbXbX--Xb
N\ J

~
m factors of b

m factors of a

-

= a™ X pm
= gmpm
6. (@™ = g™
n factors of a™
Proof: (a™)" =am™xa™xa™ X --xa™
=(axax-Xxa)X(a@axax---xa)x@xax-xa)x--x(axax-: xa)
N\ J N\ J J
m factors of a m factors of a m factors of a m factors of a
\
T~
n factors of m factors of a
=aXaXxaxXxaxXaX---Xa
mn factors of a
— amn
a\™m a™
N
Proof: (g)m—ﬂxgxgx x < m factors of <
“\») T bbb b b

m factors of a
_ axXxaxXax---Xa

T bxbxbx--Xb
m factors of b

Corollary of these laws

B G =)
SR

21



More examples:

4
[1] (%) (_3)2 — 3—432 — 3—4+2 — 3—2 — l — l

o @r-w()-:

2

3] G)_Z — 42 =16

Scientific Notation

This is an efficient way of writing and calculating
1. very large numbers positively or negatively, and
2. numbers that are very close to zero.

Format of a number written in scientific notation:

+a x 10™

Where 1 <a <10
And nis an integer.

We need to remember that

1x10=10
1% 10% =100
1% 103 =1000

1% 10* = 10000

1% 101 =10 000 000 000

And
1x1071=0.1
1x1072=0.01
1x 1073 = 0.001
1x107*=0.0001
1x1071% =0.000 000 000 1
Examples:

1. The speed of light is approximately 299,792,458 metres per second or about 300,000,000 ms™-.
Or in scientific notation, it is written as approximately 3 x 108 ms™1.

2. The Avogadro constant is approximately 6.022142 x 1023 mol™1.

22
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3. The Gravitational constant is approximately 6.6738 x 10~ m3kg=1s2.

Evaluation using scientific notation

We use the properties of exponents discussed earlier.

2,400,000,000%x0.000 004 5
0.000 03x1,500

Example: Evaluate

2,400,000,000X0.000 0045 _ (2.4x10°) x (4.5x107¢)
0.000 03x1,500 T (3%x1075) x (1.5%103)

Answer:

_ 24x4.5 _ 109%x107°
© 3x15  1075x103

_2.4%45 _ 1097

45 10-5+3
3
=24 x 2
102
=24x103(¢2

= 2.4 % 1032 = 2.4 x 10° = 240,000
Another example:
(7.2 x 1079)(1.806 x 10712) = (7.2)(1.806) x (1072)(10712)
= 13.0032 x 1079712
=13.0032 x 10721
Radicals (Anything that has a root sign is called a radical)
We know that b? = b X b. If we say that b?> = b X b = a, then the inverse of it is
b="%a
Similarly, if we have ¢ = ¢ X ¢ X ¢ = a, then the inverse of it is
c=3a
Example:

We know that 3%2 = 9. The inverse of it is

¥9=3

23



Note: When we write {/x, we can omit writing the digit 2. So ¥x = /x. But be careful, this omission is
only allowed for square roots, not for any other root.

th

n*" root of a number

Let a and b be two real numbers such that a = b™. Then, b is the n'" root of a and is denoted by the
radical symbol

Wa=b
We call n the index of the radical
And  atheradicand.
Another example: What is the cube root of 64?
Answer: We know that 64 = 43. Therefore,

V64 = 4

Sign notation of an even root
We always define the sign of an even root by the sign we affix to the front of its radical.
For example, Vi =2
And —i=-2
It is wrong to write Vi =-2
Another example,
V81 =3

And —381=-3

Generalisations of Va

Real number a Natural number n Roots of a Examples
V81 =3, —-181=
a>0 nis even Va, —Va - '3 -
a>0o0ra<0 n is odd Ya ¥8=2,3Y-8=-2
a<0 nis even Va does not exist v —4 does not exist
a=0 n is even or n is odd Y0=0

24



Properties of radicals

1. Vam = ('{/E)m
2. Va¥b =ab
NVa nfa .
3. == [y provided b # 0
4. YNa="Va
5. (%)n =a
n lal, if niseven
n—
6. Var {a, if nisodd
Examples:
2
1. (V3) =3

2. (\/—_3)2 = —3. Itis one of those strange quirks that happen in mathematics.
3. J(=3)2=+9=3

4. Y27 =3

5. ¥Y-27=-3

6. —V—27=-(-3)=3

Rational Exponents

We recall that in the definition of roots, if a = b™, then Y/a = b. Now, suppose we take both sides to the
power of n. We have

Va=b
n n
SO
= ('{/E)n = a, we started with a = b"

Now, we take both sides to the power of %,

25



(V)Y = b

1

1
X—
= (%)" " =an , usingthe property (r)t = rst
n 1
= \/a = qan
This is a very important result. From here, we can obtain two more results:
"G = 1
a=an
n m 1\m
(Va)" = (an) , taking the left and right sides to the power of m

m
= (’{/E)m = an , once again using the property (r%)¢ = rst

The other result:

1
% =qan
1
= Va™ = (@™)n , takingonly a to the power of m
m
= Ya™ = an , as before using the property (r5)t = rst

Summarising the above three results:

If a is a real number, and m and n are two positive integers such that they have no common factors, and
that the principal nt" root of a exists, then

1
° aﬁ:%

. ar=(Va)

m
n

= Yam

* a

Note: If nis even, then the domainisa = 0.

26



Example:

2
1\ s 15 . a\™m a™
— = 5 , usingthe property (=) =—
(m) (/32)5 (b) b
1
= 2
(v32) ®

2
= (\/32)5 , using propertya " = % ora™ = a%"

2
= 1

1
= (325)5 , from definition Ya = an
1.2
= 322”5 , using property (a™)" = ™"

1
=325=1332=2

Rationalising the denominator

- The process of getting rid of the radical in the denominator.
Examples:

1. Rationalise the denominator in 1
V2

. 11
Solution: AR X 1
_ 1 V2
717
A . .
=~ because V2 x v/2 = 2 in the denominator.
1 _ 2
ThUS, \/_E =7

2. Rationalise the denominator in 3%/5

2 2 35 33
Solution: ==X 3= X 5=
33T
3
23/52
5

27
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13 Algebraic Expressions
Polynomial
A polynomial is an expression
P(x) = apx™+ ay_1x" 1+ a,_,x" 2+ -+ ayx? +a;x +ag
where a,, a,_1, a2, ***, Ay, a1 and a, are real number coefficients
And  nmust be a whole number
The degree of the polynomial is the highest power of x with a non-zero coefficient if the polynomial is not

a constant. The degree of a constant function is zero.

Adding and Subtracting Polynomials — We add and subtract like terms.

Examples:
1. x+y+2x+3y
= (x+2x)+ (y+3y), group like terms
=3x+4y
2. (7x* — x? —4x + 2) — (3x* — 4x? + 3x)
=7x* —x%? —4x + 2 — 3x* + 4x? — 3x, make sure we first use the distributive property if

necessary
= (7x* = 3x*) + (—x? + 4x?) + (—4x — 3x) + 2 , group like terms
=4x* +3x%2—-7x+2

Multiplying Algebraic Expressions — All the terms in the one of the factors must multiply each and every
term in the other factor.
Examples:
1. (a+b)(c+d)
=ac+ad + bc+ bd

2. (a+b+c)fd+\e+f)

=ad + ae + af +bd + be + bf + cd + ce + cf

28



Examples:
1] @x+ D —2)= 200 + 20 (=2) + (D) + (D(-2)
=2x%—4x+x—-2=2x>-3x—-2
21 (x+29)2x—y) = (0)(2x) + () (=y) + 2y)(2x) + 2y)(=y)
= 2x2 — xy + 4xy — 2y% = 2x% + 3xy — 2y?
Bl (x—2)(x*+2x+2) = () + ()(2x) + (0)(2) + (-2)(x?*) + (=2)(2x) + (—=2)(2)

=x34+2x%4+2x—2x%>—4x—4=x3-2x—4

Special Product Formulas
Memorise these:
e (u+v)?=u?+2uv+v?
o (u—v)?=u?-2uv+v?
e UW—vi=(Ww+v)(u-v)
o U+ vdi=wW+v)W?—uv+v?

o u—v3=(wWw—-v)W?+uv+v?

Factoring quadratics

Let us say we are given the quadratic ax? + bx + c. We can rewrite this quadratic as a product of two
linear factors

ax? + bx + ¢ = (mx + r)(nx + s)
if the discriminant b? — 4ac is a perfect square.
Example:
1. Can2x? — 3x — 2 be expressed as a product of two linear factors?
Answer: In this example, we have a = 2, b = —3 and ¢ = —2. The discriminant is
b? — 4ac = (=3)? — 4(2)(=2)

=9+16 =25
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which is a perfect square as V25 = 5. Therefore, 2x? — 3x — 2 can be expressed as a product of two
linear factors.

2. Can3x? —x — 1 be expressed as a product of two linear factors?
Answer: In this example, we have a = 3, b = —1 and ¢ = —1. The discriminant is

b? —4ac = (-1)? —43)(-1)
=14+12=13

which is not a perfect square as v/13 = 3.60555--- Therefore, 3x? — x — 1 cannot be expressed as a
product of two linear factors.

If a quadratic can be expressed as a product of two linear factors, then we proceed to discuss the following
section:

Rewriting ax? + bx + c as a product of two linear factors
Step 1: We rewrite ax? + bx + ¢ as ax? + px + gx + ¢ such that

1. px + qx = bx
And 2. (px)(gx) = (ax?)(c) = acx?; i.e. p and q are factors of ac

Sowehave ax?+bx+c=ax?+px+qx+c, themiddleterm rewrittenintwo terms.

Step 2: Then for every two consecutive terms, we factor out the common factor. If Step 1 was done
correctly, we should get two major terms as shown:

ax? + px + qx + ¢ = nx(mx + ) + s(mx + 1)
Step 3: Finally, we factor out the common factor from the two major terms.
nx(mx+7r)+s(mx+r)=(mx+r)(nx+s)
In summary, for a quadratic ax? + bx + c, if its discriminant b? — 4ac is a perfect square, we have
ax*+bx+c=ax’*+px+qx+c
=nx(mx +r)+s(mx+r)
=(mx+r)(nx+s)
Examples:
1. 2x2—3x—2

Step 1: First, we find (ax?)(c) = (2x2)(=2) = —4x?2.
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Next, we find two terms px and gx such that
px +qx = bx = —3x

And  (px)(qx) = (ax?)(c) = —4x?

Note: The factors of —4 are +1, +2 and +4.

So let’s try px =x and gx = —4x

Since px +qx =x—4x = —3x
And (px)(qx) = (x)(—4x) = —4x?
px = x and gx = —4x work!

Therefore, we rewrite 2x? —3x —2 =2x? +x —4x — 2

Step 2: For every two consecutive terms, we factor out the common factor.
2x2+x—4x—-2=x(2x+1)—-22x+1)

Step 3: We factor out the common factor from the two major terms.
xQ2x+1)—-2Qx+1)=2x+ 1)(x—2)
2x2—3x—2=2x>+x—4x—2

=x(2x+1)-202x+1)

=2x+1)(x—-2)

Special Factoring Formulas
e a?—b?=(a-hb)(a+h)
e a’+2ab+b?=(a+b)?
e a?—2ab+b?=(a->h)?
e a®+b3=(a+b)(a®—ab+b?

e a®—b3=(a-h)(a%®+ab+b?

Examples:
[1] 9a? — 16 = (3a)? — 4

=Ba—-—4)(Ba+4)
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[2] 1622 — 24z + 9 = (42)* — 2(42)(3) + 32

= (4z — 3)?

Note: Only a very small handful of polynomials follow the pattern of a special factoring formula. Most
do not.
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1.4 Rational Expressions
Domain — The set of all real numbers that we can possibly assign to a variable.
Two rules for this moment:
[1] If the expression contains even roots :-
The argument in an even root cannot take negative values.
[2] If the expression contains a denominator :-
The denominator cannot be zero.

There are more rules, but we shall come to those later.

Examples:

Find the domain of the expression:

1
[1] V=5

Since the argument in an even root must be non-negative and the denominator cannot be zero, therefore
we must have

x—1=20and Vvx—1+#0

= x=21 and x—1+#0
= x=>1 and x=#1
x>1 Combining the above two conditions.

Hence, the domainis x € (1, )

R y=3%

x+1
The domain must fulfill
2x=20 and x+1+0
= x>0 and x+ -1
x=0 Combining the above two conditions.

Hence, the domain is x € [0, )
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Simplifying Rational Expressions

Revision: A rational expression has the form Z where both p and g are polynomials and g # 0.

In a rational expression, we can cancel common factors, i.e.

als\_g .
P providedb # 0andc # 0

Before we can cancel common factors, we should factor completely the numerator and the denominator.

Example:

x2+4x-12 (x+6)m

pv— ez factoring the numerator and the denominator completely

xX+6 .
== canceling the common factors.

providedx —2 + 0 = X+ 2

Note: It is quite a common mistake among students to want to cancel terms. For example, it is wrong to
do the following:

(e+2)+@=R(x+3) _ (x+2)+(x+3)
2x(x\LL - 2x

Multiplying and Dividing Rational Expressions

When multiplying rational expressions, multiply the numerators and multiply the denominators.

axc_ac
b~ d bd

When dividing rational expressions, invert the divisor and multiply.

bc

a c_axd ad
b d b ¢

More examples:

2x%4+x—6 % x3-3x2+2x _ (2x—3)(x+2) % x(x=2)(x—1)  (x+2)(x-2)

[1] x2+4x-5 4x2—6x  (x+5)e=T) 2x(22=3) 2(x+5)

providedx +5#0,x —1#0,x #0and2x -3 # 0

3
= x¢—5,x¢1,x¢0andx¢5
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x3-8 | x%+2x+4 _ x5-8 2348 (x—2)(x%+2x+4) _ (x+2)(x2-2x+4)

2
- = = x“—2x+4
x2—4 x3+8 x2—4 " x2+2x+4 (x+2)(x-2) x2+2x+4

(2]

Provided x +2# 0, x —2 %0 and x> +8 %0

=3 x¢—2,x¢2andx¢3\/—8

Adding or Subtracting rational expressions

The idea is the same as when adding or subtracting fractions, i.e. make the denominators the same so
that we can add or subtract the numerators.

If the denominators are not the same, we look for the least common denominator (LCD).

Examples:

[1] x 2 __xBxd) 20— , make the denominators the same
x—3 3x+4 (x—3)(3x+4) (x—3)(3x+4)

_ x(3x+4)—-2(x-3)

, when the denominators are the same, we can add or
(x—3)(3x+4)

subtract the numerators

_ 3x%+4x-2x+6 _ 3x%+2x+6
(x—3)(3x+4) (x—3)(3x+4)

[2] S22 x2+3 =2z, X3 , remember to completely factor the denominators
x-1 x x2-1 x-1 x (x=1)(x+1)
before we begin making the denominators the same
3(0)(x+1) 2 —D(x+ 1) (x+3)(x)

G-DOGD G-DWETD  G-DOG+D)

C3x(xe+ D -2 -Dx+ D+ +3)x 3x*+3x—2(x*—1) +x%+3x

(x-—D)(x+1) B (x-D)(x+1)
C3x%+3x—2x*4+2+x*+3x  2x*4+6x+2  2(x*+3x+1)
B x—D)x+1) T x=D)x+1D) (x—-D0)(x+1)

Compound fractions

These are rational expressions where the numerator or the denominator or both are rational expressions
themselves.

One method is to rewrite the numerator and the denominator into single fractions respectively before
simplifying the rational expression.
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Example:

2 3x 2—-3x 2—-3x
__3 ==
[1] =2 x -2 =% simplifying the numerator and the denominator respectively
123 53 71 x—1 x—1
2-3x _ x-2 . L . -
=——+——, anexpressionover another expression is basically a division
__ 2-3x % x—1 _ (2-3x)(x-1)
T ox x-2 x(x—-2)
OR We find the least common denominator of all the fractions in the numerator and the

denominator. Next, we multiply and divide the compound fraction with this result.

Example: (Same problem as above.)

DR = L)
-2 (1—;)(x)(x—1)

, the least common denominator in the numerator and the

denominatoris (x)(x — 1)

_200-1-3(0)(x-1)
O @-D -0 (x-1)

distribute in the numerator and the denominator

_ 2(x—-1)-3x(x-1) _ (x—1)(2-3x) _ (x—1)(2-3x)
- x(x-1)—x - x((x-1)-1) T x(x-2)

Simplifying an expression with negative and/or rational exponents
Keys:

1. When we factor out a common factor from terms in an expression, we always take out the factor
with the smallest exponent.

2. What remains is the difference in the exponents. Supposen < m,
a™+at = a"(am“t 1)
Factor out the common What remainsis the
factor with the smallest difference in the
exponent. exponents.

36



Examples:

5 3 5 3 5
[1] 3x 24+ 2x z2=x 2 (3 + 2x 2 ( 2)> , factor out the factor with the smaller exponent. Here,
_5
2
exponents.

< — % What remains is the difference in the
_5 _3,5 _5 2 _5
=x 2(3+2x 2 2>=x 2(3+2x2>=x 2(3+ 2x)

1 1
o 2\2 0 a2(a_2)"2 1 1
(4-x )szxg‘* ) % (4 x4 x2(4— x2) T

(2]
=(4- xz)‘% + x2(4 — xz)_% =(4- xZ)—% ((4 - xZ)—%—(—%) + xZ)

:_2—§_21 2=_2—§= 4 _
(4—x%) 2((4—x°)" +x%) = (4—x°) 2(4)

@y G-

1

B]  4x3(2x— 1) — 2x(2x — 1)z = 2x(2x — 1)z (2x3-1(2x () - 1)

2 _ 2 _
= 2x(2x — 1)_%(2x2(2x —1)2-1) = 2x(2x*(2x — 1) = 1)

(2x — 1)%

Rationalising the Denominator or the Numerator

What is a conjugate?

a+b and a ¥ b are conjugates of each other.

Examples: The conjugateof x +y is X—y or —x+vy,
The conjugateof r—tisr+t or —r—t.

To obtain the conjugate of a two-term expression, simply change the sign of one of the terms.

Rule of thumb:
e If we wish to rationalise the numerator, we multiply and divide the rational with the conjugate of
the numerator.
o If we wish to rationalise the denominator, we multiply and divide the rational with the conjugate
of the denominator.
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Examples:

Rationalise the denominator:

2(x—y) _ 2(x=y) _ VXH/Y . . _ .
el iy X e ; One of the conjugates of v/x ﬁ is v + ﬁ .

2= nWEx+y) 2 -y)([x+\fy)
(V= EE ) x=y

(1]

= 2(4F + )

Rationalise the numerator:

Vx+h+1—vVx+1 _ Vx+h+1-Vx+1 X Vx+h+1+Vx+1

[2] n n NS PNl

aconjugateof vVx + h+1—+/x+1is
Vx+h+14+Vx+1

_(\/x+h+1)2—(\/x+1)2_ x+h+1)-(x+1)  x+h+1-x-1
 A(Wx+h+1+vVx+1)  h(Vx+h+1+vVx+1) h(Vx+h+1+Vx+1)

h 1
CR(Vxtht14Ve 1) Vit htl+vrtd
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1.5 Equations

General Rule of Thumb when treating both sides of an equation: Be fair to both sides.

1. If we add a value to one side of an equation, we have to add the same value to the other side.
Example: a=b»b
= at+c=b+c
2. If we subtract a value from one side of an equation, we have to subtract the same value from the
other side.
Example: a=hb

= a—d=b—-d

3. If we multiply a value to one side of an equation, we have to multiply the same value to the other
side.

Example: a=b»b
= ac = bc

4, If we divide one side of an equation by a non-zero value, we have to divide the other side by the
same value.

Example: a=hb
= %=§, provided ¢ # 0

General Rule of Thumb when moving a term from one side of the equation to the other.
When we move a term, we change its sign, i.e. positive becomes negative and negative becomes positive.

1. a+b=c
= a=c—b

Proof: a+b=c
= a+b—b=c—b

= a=c—b
2. a—-b=c
= a=c+b

Proof: a—b=c
= a—b+b=c+b
= a=c+b
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General Rule of Thumb when moving a factor from one side of the equation to the other.

When we move a factor from one side of the equation to the other, if it was originally in the numerator,
we move it to the denominator at the other side. And if it was originally in the denominator, we move it
to the numerator at the other side.

a c
1. -=-
b d
1 c
= ==
b ad
a c
Proof: —=-—
oof: —=-
a [ 1
= —X===X=
b a d a
1 c
= ==
b ad
a Cc
2 -=-
b d
= a—bc
d
a c
Proof: —=-
b d
= -Xb==Xb
= a—bc
d
Example:

Solve the equation for the indicated variable:

101 1
1141 forR
R R1+R2' 1

(1]

We wish to isolate the variable R, i.e. rewrite the equation as R, in terms of the other variables.

1 1 1 R, R
ﬁ —_— _——— —_—— —
Ry R R, RaR RyR
1 _ R,-R
= — =22
Ri  R;R
R . . .
= R, = = 2— . Taking the reciprocals of both sides
-
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Solving Linear Equations

In general, to solve a linear equation, these are the steps:

ax+b=0
= ax =—b
b
= X =—-
a

Examples: In the following exercises, solve for x.

[1] 4x+7=9x -3
= 4x —9x =-3-7 Move all terms with x to one side of the equation, and all terms
without x to the other side.
= —5x =-10
=20_y
-5
[2] 1-(2-3B-x)=4x—(6+x)

= 1-2-3+x)=4x—-6—x
= 1-(-1+x)=3x—-6

= 1+1—x=3x—-6

= 2—x=3x—6

= —x—3x=—-6-—2

= —4x = —8
x=:—i=2

Solving Quadratic Equations
Completing the Square and Solving a Quadratic Equation
(1] (Bx +2)>=10

= 3x + 2 = +V/10
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= 3x+2=+v10 or 3x+2=—V10

= 3x=—2++V10 or 3x =-2—-+10

—2++v10 —2—/10
X = or

=
3 3
2] 3x2—6x—1=0
= 3(x2-2x)—1=0 ; Take the coefficient of x within the brackets, halve it and
N2
square the result, i.e. (72) =(-1)?%=1
= 3(x2-2x+1-1)—-1=0 ; Add and subtract the above result within the

brackets.
= 3(x2-2x+1)+(B)(-1)—-1=0
= 3(x—1)2-3-1=0
= 3(x —1)2—4=0

= 3(x —1)2 =4

= (x—1)2==
ey [P SN 21
3 3 3
= —1=—30rx—1——23—\/§
x:1+i§orx=1—ig
3 3
The Quadratic Formula
Recall that: A quadratic equation has the form

ax’+bx+c=0

And has solutions given by the quadratic formula:

—b +Vb? — 4ac
X =
2a
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The number b? — 4ac is called the discriminant and there are three possibilities based on the value of the
discriminant:

e If b2 — 4ac > 0, then the quadratic has two real and distinct solutions.
e If b%2 — 4ac = 0, then the quadratic equation has one real solution.

e If b? — 4ac < 0, then the quadratic has no real solutions.

Examples:
[1] 3x2—-6x—1=0
— \Vh2—
= xz% where a =3,b=—6andc = -1

(-6 +/(-6)2-43)(-1) 6+V36+12 6+v48 6+,/(16)3) 6+ V16V3
- B B B B 6

2(3) 6 6 6
6+4V3 6 43 2V3
6 6 6 3
= x:1+%§orx=1—%§

Zero product property
AB =0 ifandonlyif A=0 or B=0

Corollary: If the quadratic expression can be factorised as follows:
ax?+bx +c = (mx +7r)(nx +s)
Then, we have

ax’+bx+c=0

= (mx+r)(nx+s)=0
= mx+r=0ornx+s=0
= mx = —r or nx = —s
s S
= X=——orx=-—=
m n
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Examples:

[1] 6x(x—1)=21—x
= 6x%> —6x=21—x
= 6x>—6x—214x=0
= 6x%2—5x—21=0

The discriminant is b? — 4ac = (=5)% — 4(6)(—21) = 25 + 504 = 529 = 232, a perfect square.
6x2 — 5x — 21 can be factorised into two linear factors with integer coefficients.

Step #1: We want to find px and gx such that
px + qx = bx = —5x
And  (px)(gx) = (ax?)(c) = (6x?)(—21) = —126x?

The factors of —126 are +1, +2, +3, +6, +7, +9, +14, +18, +21, +42, +63 and +126.
These are the possible values of p and g.
Also, we take note that pq is a negative number, meaning p and g are of different signs.

Let’s try px = —14x and gx = 9x

Check: px +qx = —14x + 9x = —5x
And  (px)(gx) = (—14x)(9x) = —126x?2

Both conditions are fulfilled, so px = —14x and gx = 9x work!

So, 6x% —5x — 21 = 6x% — 14x + 9x — 21
=2x(3x—-7)+3Bx—-7)
=Bx-7)2x+3)

6x°>—-5x—21=0

= Bx—7)2x+3)=0
> 3x—7=00r2x+3=0
= 3x =7 or 2x = -3
7 3
= X=-orx=—=
3 2
1 1
[2] il
= x—4 _ X _
x(x—4) x(x—4-)_
X—4—-x
= x(x—4)_1
= —t
x(x—4)_
= —4=x(x—4)=x>—4x
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= X2 —4x+4+4=0

= (x—2)2=0

= x—2=0
x =2
[3] 22-327+42=0
2 16

N 16(z2 —§z+%) = 16(0)
= 1622 —24z+9=0

= (4z—-3)2=0

= 4z—-3 =0

3
= zZ==
4

(4] V2x+1+1=x
= V2x+1=x-1
= (\/Tﬂ)z =(x—-1)2 ; Square both sides.
= 2x+1=x?-2x+1
= 2x+1—x*+2x—-1=0
= —x?+4x=0
= x(—x+4)=0
= x=0o0or—x+4=0
= x=0o0orx=4 These are the possible solutions.

Important: When solving an equation with an even root, it is important to plug in our results in the
original equation to see if we have to reject any of the possible solutions.

So let us plugin x = 0 as well as x = 4 into the equation v2x + 1 + 1 = x and see which one works.
When x = 0, we have {/2(0)+14+1=0
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= Vi+1=0

= 2 = 0 which is clearly incorrect!!!
Therefore, x = 0 cannot be a solution.
When x = 4, we have /2(4)+1+1=4

= V8+1+1=4

= Vo+1=4

= 3+ 1 =4 whichisclearly correct.
Therefore, x = 4 is a solution.

Vv2x + 1+ 1 = x has one solution, i.e. x = 4.

[5] 3x +5|=1
= 3x+5=—-1o0or3x+5=1
= 3x=—1—-50r3x=1-5

= 3x =—6 or 3x = —4

6 4
= X=—=-0orx=—-
3 3
= x:—Zorx=—§
OR 3x+5]=1

= (3x +5)? =12

= 9x2+30x+25=1

= 9x2+30x+25—-1=0
= 9x%2 +30x+24=0

>  33x2+10x+8)=0
= 3Bx+4)(x+2)=0
= 3x+4=0o0rx+2=0
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3x=—4or x=-2

X=—-or x=-2
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1.6 Modelling with Equations

When we are given a situation to solve, we need to do is to come up with an equation that models the
problem at hand. To find the solution to the problem, we solve this equation. More often than not,
drawing a diagram of the situation helps a lot too.

Examples:

[1] Renting a Truck: A rental company charges $65 a day and 20 cents a mile for renting a
truck. Stavros rented a truck for 3 days, and his bill came to $275. How many miles did he drive?

Solution: Let x be the number of miles Stavros drove.

We are told that Stavros rented the truck for 3 days at $65 per day, so the basic rental for the 3 days would
be

Basic rental = No.of days X Rental per day
= 3 X $65 = $195

We are also told that the mileage charges were 20 cents per mile, hence the total mileage charges that
Stavros incurred would be

Mileage charges = Miles driven X Charge per mile
= x X 20 cents
=x X $0.20 = $0.2x
Where x is the number of miles that Stavros drove with the truck.

We are also told his total bill came up to $275. This total bill would be the sum of the basic rental and the
mileage charges, i.e.

Total rental = Basic rental + Mileage charges
> $275 = $195 + $0.2x

= 0.2x =275 - 195

=80
= x=ﬂ=@=400miles
0.2 2
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[2] Investments  Amber invested $12,000, a portion earning a simple interest rate of4%% per year

and the rest earning a rate of 4% per year. After 1 year the total interest earned on these investments
was $525. How much money did she invest at each rate?

Solution: Let x be the amount earning 4%% per year
And Let y be the amount earning 4% per year

We know that the total amount invested is x + y = $12000 --(1)
And we are told that the total interest earned was $525, i.e.
Interest earned on the x portion + Interest earned on the y portion = $525

> xx45%+y X 4% = $525

= x %X 0.045 + y x 0.04 = $525

= 0.045x + 0.04y = $525 --(2)
We have two equations in two unknowns that we can solve:
From (1) x+y=2%$12000

= y = $12000 — x —(3)
Substitute (3) into (2),

0.045x + 0.04y = $525

= 0.045x + 0.04($12000 — x) = $525

= 0.045x + $480 — 0.04x = $525

= 0.005x = $525 — $480

= $45

$45 $45000
= X=——=

=goos = 5 — 29000 ~(4)

Substitute (4) into (3) to obtain y,
y =$12000 — x

= $12000 — $9000 = $3000

$9000 was earning 4%% interest and $3000 was earning 4% interest.
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[3] A Riddle A movie star, unwilling to give his age, posed the following riddle to a gossip
columnist: “Seven years ago, | was eleven times as old as my daughter. Now | am four times as old as she
is.” How old is the movie star?

Solution: Let m be the age of the movie star
And Let d be the age of his daughter

We are told the movie star is four times as old as his daughter, i.e.
m=4d --(1)

Seven years ago, the movie star was 11 times as old as his daughter. Seven years ago, the ages of the
movie star and his daughter would be m — 7 and d — 7 respectively. So,

m—7=11(d - 7)
=11d - 77
= m=11d-77+7
= m=11d — 70 --(2)
Substitute (1) into (2)

m=11d - 70
> 4d =11d — 70
= 4d —11d = -70
> —-7d = =70

_ =70 _

= d= — 10 ---(3)

Substitute (3) into (1) to solve for m,
m=4d =4x10=40

The movie star is currently 40 years old and his daughter is 10 years old.
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[4] Framing a Painting Jack paints with watercolours on a sheet of paper 20 in. wide by 15 in.
high. He then places this sheet on a mat so that a uniformly wide strip of the mat shows all around the
picture. The perimeter of the matis 102 in. How wide is the strip of the mat showing around the picture?

Solution: Let x be the width of the strip.
K A
X
A
15in 15 + 2x
X . X
< >l 20in >l >
A
A
X
v v
< 20 + 2x >

We are told the perimeter of the mat is 102 in. We can thus write that
2(20 + 2x) + 2(15 + 2x) = 102
> 2(20 + 2x + 15 + 2x) = 102

= 20+2x+15+2x=t£=51

= 4x + 35 =51
= 4x =51—-35=16
= x:E=4in.

4

The width of the strip is 4 in.
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[5] Length of a Shadow A man is walking away from a lamppost with a light source 6 m above the
ground. The manis 2 m tall. How long is the man’s shadow when he is 10 m from the lamppost? [Hint:
Use similar triangles.]

Solution: Redrawing the diagram:

Let x be the length of the shadow:

v O v

10 m > < X

v

Revisiting similar triangles, if BC and DE are parallel, we have

AB _ AD
BC ~ DE
X 10+x
= - =
2 6

= 6x = 2(10 + x) = 20 + 2x

= 6x —2x =20

His shadow is 5 m long.
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[6] An ancient Chinese problem This problem is taken from a Chinese mathematics textbook
called JUEEH R, or The Nine Chapters on the Mathematical Art, which was compiled from the 10" century
BCE to the 2" century CE.

A 10-ft-long stem of bamboo is broken in such a way that its tip touches the ground 3 ft from the base of
the stem, as shown in the figure. What is the height of the break?

Solution: Let us redraw the diagram:

Let x be the height of the triangle,
And Let y be the hypotenuse.

A

<+“— 3ft —»

We are told that the bamboo is 10 ft long, i.e.
x+y=10 --(1)
Using Pythagoras’ Theorem, we have
x? 4 3% =y? —~(2)
From (1), we can rewrite as y in terms of x,
x+y=10
= y=10—x --(3)
Substitute (3) into (2),
x2+3%2=1y2
= x?+9 = (10 — x)?
=100 — 20x + x?

= 9 =100—20x
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= 20x =100—-9=091
= x=2=42ft
20 20

The height of the break is 4% ft.

Note: Ancient Chinese mathematicians had discovered the Pythagoras Theorem independently from
the Greek mathematicians. They called this theorem the GJf% (Gou Gu) Theorem. Numerous articles
have been written about this, one of which is
http://5010.mathed.usu.edu/Fall2014/BProbst/TheChinese.html .
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1.7 Inequalities
Properties of Inequalities
Let a, b, c and d be real numbers. We have the following properties:
1. Transitive Property
If a<b and b<c, then a <c.
If a<b and b<c, then a<c.
2. Addition of Inequalities
If a<b and c<d, thena+c<b+d
fa<bandc<d,thena+c<b+d
3. Addition of a Constant
If a<b,thena+c<b+c
fa<b,thena+c<b+c
4. Multiplication by a Constant
If c>0 and a < b, then ac < bc
If c>0and a<b, then ac < bc
If c<0 and a<b, then ac > bc
If c<0 and a<b, then ac = bc

Important: When we multiply or divide by a negative number, we must reverse the inequality sign.

Solving inequalities

Examples:

1. 56 —-7<3x+9

= 5x —3x <9+ 7, same rules of moving terms apply
= 2x <16
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16 - o . N
x<—, When dividing by a positive number, we do not reverse the inequality sign.

x <8 or x €(—x,8)

56 —-7<3x+9
3x+9>5x—-7
3x —5x>-7-9
—2x > —16

-16 - . . N
x<—, When dividing by a negative number, we have to reverse the inequality sign.

x <8

1-2x>x—4

2—3x = 2x —8 , Multiply every term by 2 to avoid working with fractions.
—3x—2x>-8-2

—-5x > -10

x < __—150 , Remember, when dividing by a negative number, we reverse the inequality sign.

x <2 orx€(—x,?2]

—3<6x—1<3

-3+1<6x<3+1

—2<6x<4
-2 4
—=<x<-
6 6
1
——Sx<zorxe[—l,3)
3 3 3’3
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Quadratic Inequality

We know that all quadratics yield graphs that are parabolic. So when we solve inequalities involving
guadratics, we can look at the quadratic graph, i.e. the parabola, to solve quadratic inequalities.

Examples: Find intervals that satisfy the following inequalities:
1. Solve 4x?> —5x —6 >0
Step #1: Assume that f(x) = 4x2—5x—6=10

= (4x+3)(x—2)=0

= 4x+3=0o0orx—2=0

= X = 3 or x =2
4
Step #2: The graph of f(x) = 4x? — 5x — 6is a concave upward parabola that intersects the X-
axisat x = —%and x=2.

We want the intervals when f(x) = 4x2 — 5x — 6 > 0, i.e. we want intervals for the portions of the
graph when f(x) > 0 or wheny > 0. In other words, we want the intervals for the portions of the graph
that are above the x-axis. From the graph, we can see that the portions of the graph that are above the

. . 3
X-axis occur on the intervals x < 3 and x > 2.

The solutionto 4x?> —5x — 6 > 0isx € (—00, —%) U (2, ).
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2. Solve 2x —x2 >0
Step #1: Assume f(x) =2x —x%2=0

= x(2—x)=0

= x=0o0or2—-—x=0
= x=0orx=2
Step #2: The graph of f(x) = 2x — x? is a concave downward parabola that intersects the x-axis

atx =0 and x = 2.

We want the intervals when f(x) = 2x — x? > 0, i.e. we want intervals for the portions of the graph
when f(x) = 0 or when y = 0. In other words, we want the intervals for the portions of the graph that
are above and on the x-axis. From the graph, we can see that one portion of the graph that is above and
on the x-axis occurs on theinterval 0 < x < 2.

The solution to 2x —x2 > 0is x € [0,2] .

Polynomial Inequalities
In this section, we discuss a method of using a Sign Table to solve polynomial inequalities.
Example: Solve 2x3 —3x? —32x +48 >0
Let f(x) =2x3—3x% —32x + 48
Step #1: Assume 2x3 —3x2 —32x +48 =0
= 2x—-3)(x—-4)x+4)=0
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= 2x—3=0o0orx—4=0o0rx+4=0

3
= x:Eorx=4orx:—4

Step #2: We now draw a sign table on the number line using the above values of x as divisions, i.e.
we divide the number line into intervals x < —4, -4 <x < ;, ;< x <4 and x > 4. Then, on each

interval, we choose a value of x as a test value that we will assign into the polynomial f(x). The sign of
the polynomial on each interval indicates whether that portion of the graph of the polynomial is above or

below the x-axis.

Intervals (—o0,—4) (—4, ;) (g, 4) (4, )
Test Value x=-5 x=0 x=2 x=05
Signof 2x — 3 —ve —ve +ve +ve
Signof x — 4 —ve —ve —ve +ve
Signof x + 4 —ve +ve +ve +ve
Sign of

fX)=2x-3)(x—4)(x —ve +ve —ve +ve

+4)

From the last line in the above table, we can conclude that the solution to

2x3 —3x2—32x +48 >0 is x € (—4,%) U (4, ).

Here is an application: Find the domain of the expression /3x2(x — 1) .

We know that the argument in an even root must be non-negative, i.e. the domain is the solution to the

inequality 3x%(x — 1) = 0.

Let f(x) = 3x%(x — 1).

Step #1: Assume 3x%(x—1) =0
= x>=0o0orx—1=0
= x=0o0rx=1
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Step #2: Now, we draw a sign table with the number line divided by the above x values.

Intervals (—00,0) (0,1) (1, )

Test Value x=-1 x=0.5 x=2

Sign of x? +ve +ve +ve
Signofx — 1 —ve —ve +ve

sign of f(x) = 3x%(x — 1) —ve —ve +ve

As the inequality 3x2(x — 1) > 0 includes when 3x2(x — 1) > 0 and 3x2?(x — 1) = 0, therefore the
solution to the inequality 3x2(x —1) > 0 is x > 1 or x = 1. Therefore, the overall solution is x > 1
and in interval notation, we can write that

The solution to the inequality 3x?(x — 1) = 0, or the domain of /3x2(x — 1), is x > 1
orx € [1,)
Rational Inequalities

The method to solve a rational inequality is similar to the method of solving a polynomial inequality, i.e.
we utilise a sign table based on intervals on the number line.

It is important to remember that in a rational, the denominator must never be zero.

2_
Example: Solve the inequality le <0

1 (=1)(x+1)
- X

x%—
Let flx) =
X
Step #1: Assume that (x2 —1)(x) =0.
(Notice that:  We assume that all the factors in the numerator and the denominator multiply.)
= x—-Dx+DX) =0
= x—1=0orx+1=0o0rx=0

= x=1lorx=—-1lorx=0
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Step #3: Now, we draw a sign table with the number line divided by the above x values.

Intervals (—00,—1) (-1,0) (0,1) (1, 0)

Test Value x=—2 x =—0.5 x =0.5 x=2
Signofx —1 —ve —ve —ve +ve
Signofx+ 1 —ve +ve +ve +ve

Sign of x —ve —ve +ve +ve

Signof f(x) = w —ve +ve —ve +ve

x—1)(x+1)

At first glance, we may mistakenly write our solution to the inequality ( <0 as

x € (—oo,—1]U [0,1]

However, we must remember that the denominator can never be zero, i.e. x # 0. Therefore, the correct

solution to the inequality w <0is

x € (—oo,—1] U (0,1]

Absolute Value Inequalities
If ¢ >0, then
1. x| <c & —-c<x<c
x| <¢c © —-c<x<c
2. x| >c © x<-corx>c

x| >¢c © x<-corx=c

Examples:

1. |x — 5| <2

= —-2<x-5<2

= —2+5<x<2+5

= 3<x<7o0rx€(37)
2. |lx +3] =7

= x+3<-7o0rx+3=>7
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= x<-7—-3o0orx=7-3

= x<—-10orx>4 OR x € (—o0,—10]U [4, )

Modelling with Inequalities
Examples:

1. You go to a candy store to buy chocolates that cost $9.89 per pound. The scale that is used in the
store has a state seal of approval that indicates the scale is accurate to within % of a pound. According

to the scale, your purchase weighs one-half pound and costs $4.95. How much might you have been
undercharged or overcharged as a result of inaccuracy in the scale?

Solution: You bought% Ib of chocolates but let x be the actual weight of your chocolates. The scale

. . 1
is accurate to plus or minus o Ib. So we can say that

1 1 1 1
-——=—=<x=<-+—=
2 32 2 32
16 1 16 1
> ST o SXS ot
32 32 32 32
15 17
= —<x<—
32 32

The chocolates cost $9.89 per pound, so the actual cost of the chocolates should be

15 17
$9.89 x = < $9.89x < $9.89 x =

15 17
= $9.89 x = < $9.89x < $9.89 x =

= $4.64 < $9.89x < $5.25

Since you paid $4.95 for the chocolates, you were either undercharged by as much as
$5.25 — $4.95 = $0.30

or you were overcharged by as much as

$4.95 — $4.64 = $0.31
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2. You are considering two job offers. The first job pays $3000 per month. The second job pays
$1000 per month plus a commission of 4% of your gross sales. Write an inequality yielding the gross sales
per month for which the second job will pay the greater monthly wage. Solve the inequality.
Solution: Let x be the gross sales per month.
The first job pays $3000 per month.
The second job pays $1000+ 4% of x = $1000 + 0.04x
We want to know what is x when
$1000 + 0.04x > $3000

= 0.04x > $3000 — $1000

= 0.04x > $2000

$2000
=
0.04
$2000
> X >—3
100
$2000
> X >—3

25

= x > $2000 x 25

= x > $50,000

For the second job to pay the greater monthly wage, the gross sales must exceed $50,000 per month.

3. In order for an investment of $750 to grow to more than $825 in 2 years, what must the annual
interest rate be? ( Formula: A =P(1+1t) )

Solution: Given P =$750 and t=2.

We want A > $825

= P(1+1rt) > $825

= $750(1 +r x 2) > $825

$825
= 1+2T>ﬁ
11x75
= 1+2r>10><75
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11
> 1+2T>B

11

= 2r>—-—1
11 10
= 2r>——-—=
10 10
1
= 2r > —
10
1
=
2x10
1
= r>—
20

= r > 0.05
In order for an investment of $750 to grow to more than $825 in 2 years, the annual interest rate must

exceed 0.05 or 5%.

4, The revenue from selling x units of a product is R = 115.95x. The cost of producing x units is
C = 95x + 750. To obtain a profit, the revenue must be greater than the cost. For what values of x will
this product return a profit?

Solution: To obtain a profit, R > C
Or 115.95x > 95x + 750

= 115.95x — 95x > 750

= 20.95x > 750

750

=4 x>
20.95

= x > 35.8

In order to return a profit, we must sell at least 36 units.
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1.8 Coordinate Geometry

The Coordinate Plane

The rectangular coordinate system is also known as the Cartesian Coordinate System named after the
French mathematician Rene Descartes (1596 — 1650).

e Consists of a pair of real numbers written as (x, y).

e Used to pinpoint a specific position on an xy-plane as shown below:

Quadrant Il Quadrant |

Py )

(-4,-2)

Quadrant IlI 4T Quadrant IV

Example: Sketch the region given by the set {(x,y) / |x| < 3 and |y| < 2}.

There are two inequalities here. We need to look at both of them separately and then see which region
is common to both inequalities, or which region is an overlapping of both inequalities.
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The first inequality is |x| < 3 or —3 < x < 3. So the region where —3<x <3 is

Next, we look at the second inequality |Y| <2 or_ 2 <y < 2. Thisregionis

y
A

.l
sl
a1
i

|
Ty

66



Therefore, the overlapping region where ‘X‘ <3 and M <2 is

y
A

l
sl
i1
i

- 6-—5-3

|
¢ gy

The Distance Formula
Suppose we have two points, (x4, y;) and (x5, y,), on the Cartesian plane as shown below.
The horizontal distance, also known as run, between the two points is x, — x;.

The vertical distance, also known as rise, between the two pointsis y, — y;.

y

(x2,¥2)

Y2 — W1

(x1,¥1)
< X7 X1 —>

X

We can use the Pythagorean Theorem to find the distance between these two points:
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(x —x1)%+ (, —y1)2 =d?

= d=+/(;—x)%+ (y2 — ¥1)?

Example:
Find the distance between two points (—2,1) and (3,4).

Solution: Let (x1,v1) = (—2,1)
And  (x2,¥2) = (34)

Thus, the distance between these two points is

d= \/(xz —x1)2+ (y2 —y1)?

= J (3-(-2)" + -1

=JB+2)2+ (4 -1)?
=52 +32
=v25+9

= v/34 units
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The Midpoint Formula

Let us say we are given a straight line joining two points, A(x,, y,) and B(x}, yp), as shown below. Now
suppose we wish to find the midpoint of these two points.

y

B(xp,yp)

A(Xq,Ya)

Notice that the midpoint, M (x,,, V), of the line joining two points is the point that divides this enjoining
line in the ratio of 1: 1. Thus, the midpoint formula is obtained from the above by setting the ratio m:n
as 1:1.

So we have,
1XA+1XB
M =207
1+1
A+B
= M=—

This gives us the coordinates of the midpoint of the line segment joining two points, A(x,,y,) and
B(xp,yp) as

Xp+X +
Mz(b a’J’b ;Va)
2 2

Note: Notice that this is simply like finding the average values of the x and the y coordinates of the two
endpoints.
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Example: Find the midpoint of the line segment joining points (—5,—3) and (9,3).

Solution: Let the midpoint be M (x,,,, ). The midpoint formula states that the midpoint is given
by

Xp+x +
M=( b a’J’b ya)
2 2

_ (—5+9 —3+3)
N2 7 2

(9)-co

Intercepts

[1] The x-intercepts are the points where the graph of an equation intersects the x=axis.
To find the x-intercepts: Set y = 0 and solve for x.

[2] The y-intercepts are the points where the graph of an equation intersects the y-axis.
To find the y-intercepts: Set x = 0 and solve for y.

Note: Inafunction, there can be as many x-intercepts as possible, but there can only be one y-intercept.
Can you think of the reason why?

Example:
Find the axes interceptsof y = x + V2 — x

First of all, we need to find the domainof y = x + V2 — x.
We can see there is a term with a square root function and we need the argument of the square root to
be non-negative, i.e. we need

2—=x=20

= x<2

To find the x-intercepts: Set y = 0 and solve for x.

y=x+\/2Tx
= 0=x++vV2—x Settingy =0
= 2—x=—Xx
= 2—x=(-x)?=x?
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= x> +x—-2=0
= x+2)(x—1)=0
= x+2=0o0rx—-1=0
= x=—2orx=1
Since both these numbers are on the domain, can we safely conclude that these are the x-intercepts? Not

quite yet. We still have to check and confirm if these are indeed the x-intercepts. We do this by
substituting our answers to the x-variable in the original equation

y=x+ V2 —x
and we check if y = 0 is satisfied.
Let us substitute x = —2, we have
y=-2+y2-(-2)

=-2+V2+2

=-2+4

=-2+42=0
We see that y = 0 when x = —2, so this confirms that x = —2 is indeed an x-intercept.
Now, let us substitute x = 1, we have

y=1+ V2-1

=1++1

=1+1=2
We see that y # 0 when x = 1, so this shows that x = 1 is not an x-intercept.

In conclusion, y = x + V2 — x has only one x-intercept, i.e. x = —2.

To find the y-intercept: Since x = 0 is on the domain, we can also safely set x = 0 and solve for y.

y=x+v2—-x
= y=0++v2-0 Settingx =0
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= y =42

This is the y-intercept.

Circles

Let us consider a circle with centre C(h, k) and radius of length r. Let P(x,y) be any arbitrary point on
the circle.

<

P(x,y)

From the Pythagoras’ Theorem, we can see that

x-h?+@—-k?=r?

This is the standard form for the equation of a circle with centre C(h, k) and radius of length r.

Example: Find the equation of the circle where the endpoints of a diameter are P(—1,3) and
Q(7J_5)'
Solution: The centre of the circle is the midpoint of P(—1, 3) and Q(7,—5).
__ (—147 3+4(-5)
Hence, C—(z, 5 )

>  (o=52)=G-1

272

Its diameter is the distance between P(—1,3) and Q(7,—5)

d= \/(7 —(-1)* + (-5-3)?

= /82 + (—8)2 = V64 + 64 = .[(2)(64)
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= V6#2
= 8V2 units
The radius of a circle is half its diameter, hence

r=§=%§=4\/§unit5
The equation of the circle is

(x—h?+ @ —k?=r?

> @-32+(-(1) = @2

= (x =32+ +1D*=(16)(2)

= (x—-3)2+@W+1)?2?=32
Check: Let’s plug in the two points given in the question:
Given P(—1,3),i.e.x = —1and y = 3. So we have

(-1-3)2+B+1)?=(-4)?>+4>=16+16 = 32

Given also Q(7,—5),i.e.x = 7and y = —5. So we have

(7-3)24+(-5+1)2 =42+ (—4)2 =16 + 16 = 32
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Symmetry
In this topic, we shall discuss three types of symmetry:
[1] Symmetry about the x-axis.

The x-axis is like a mirror, the parts of the graph above and below the x-axis are mirror images of each
other.

Test:  The equation is unchanged when we replace y by —y.

y
A

Note: A graph with this property is the graph of a non-function.

[2] Symmetry about the y-axis.

The y-axis is like a mirror, the parts of the graph to the left and to the right of the y-axis are mirror images
of each other.

Test:  yis unchanged when we replace x by —x.
y
A

74



[3] Symmetry about the origin 0(0, 0)

Imagine we pin a tack at the origin 0(0,0) and we turn the graph upside down. If the graph maps back
onto itself after the turn, then we can safely say this graph is symmetric about the origin 0(0, 0).
Test:  When we replace x by - x, the result is that y is replaced by —y.

y
A

Note: Only a small handful of graphs have symmetry. The majority of graphs have no symmetry
whatsoever.

Examples: Test the equations for symmetry:
[1] y =x3+10x
Replace x by —x: y=(=x)3+10(—x) = —-x3—-10x = —(x3+ 10x) = —y

When we replace x by - x, the result is that y is replaced by - y. This indicates that the graph of y =
x3 + 10x is symmetric about the origin 0(0, 0).
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The graph of = x3 + 10x :

150
100
50
-4 2 2 4
-50
-100
-150
21  y=x*+Ix|
Replace x by —x: y=(=x)?+|-x|=x*+|x|=y
We can see that y remains unchanged when we replace x by — x. This indicates that the graph of y =
x2 + |x| is symmetric about the y-axis.
Graphof y = x2 + |x|:
30
25
20
15
10
5
-4 22 2 4
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1.9 Lines
The Slope of a Line

Let us consider a straight line L passing through two points, i.e. P,(x,, y,) and P,(x,,y,)-

y
A
67T L
5__
4__ ;Pz(xz*yz)

«— rise = Ay =y, -y,

v\mn' =Ax = x, —x,

I I I
LI N R
1 2 3 4 5 6

The slope of a non-vertical line that passes through P,(x,,y,) and P(x,,y,) is

rise -
m = y2 yl

run - X, —X,

Examples:
Find the slope of the line through P and Q.

1. P(-1,6), Q(4,-3)

Slope, m=u
Xy =%
— —-3-6 -9
4-(-1)" 5
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2. P(—1,-4), Q(6,0)

Slope, M :u
X; =X
_0-(-4)

- 6-(-1)

4
-

Observations

Notice that if a line is in the bottom left to the top right direction, i.e.

its slope takes a +ve value. For example,
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If a line is in the top left to bottom right direction, i.e.

its slope takes a —ve value. For example,
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And if a line is horizontal, i.e.

Its slope takes a zero value. For example,

y
A
6__
5 _
1w 3-3 _920
4 3-(-4) 7

° 3 °®

P (- 4,3) ;1 P,(3,3)

1__
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Point-Slope Form of the Equation of a Line

Let us suppose that there is a general point P(x, y) that lies anywhere on a non-vertical line. Let us also
suppose that there is a specific point Pl(xl, yl) that lies on the same line. Let us further suppose that
the slope of the line is m. What happens now?

6__

From here, we can obtain the Point-Slope Form of the Equation of a Line :

y—y, =m(x—x,)

Note: To find the equation of a straight line, we need to know two things:
1. The slope of the line, m.
2. Any one point that lies on the line, (x4, 1)
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Slope-Intercept Form of the Equation of a Line

We can always convert the Point-Slope Form to another form called the Slope-Intercept Form.

y=y1=mx—x)
= Yy — Yy, =mx —mxg
= y=mx+y, —mx;

We let b =y; —mx; and we can rewrite the above as
y=mx+b
Notice that when x = 0, we have
y=»
which is the y-intercept, or where the straight line intersects the y-axis.

y
A

6T
5__
4 -

Slope = m
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Example: Find an equation of the line that passes through (—1,4) with slope — 3.

Answer: Here, the line passes through (x,, y,) = (—1,4). Therefore, the equation of the line is
y—yi=m(x—x)
= y-4=-3(x-(-1)

=-3(x+1)

=-3Xx—-3
= y=-3x—-3+4
= y=-3x+1

And we can conclude that the y-intercept of this line is at (0, 1).

Vertical and Horizontal Lines

A horizontal line that intersects the y-axis at (0, a) is simply writtenas y = a.

A vertical line that intersects the x-axis at (¢, 0) is writtenas x = c.

y
A
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For example, if a line passes through (3,0),

y
A
6 —_—
5 —_
4+ Xx=3
A/
3 —_—
2 —_
1T (30)

General First-Degree Equation of a Line

Every straight line can be written in the form

Ax+By+C =0

= By =-Ax-C
A C

= y=——X——
B B

The slopeis m = —S and the y-interceptis b = —%.

Example:

Find the slope and the y-intercept of 2x — 3y + 6 = 0 and draw its graph.

Answers: From the line equation, A=2, B=-3 and C =6. Therefore, we have

A 2
Slope, N=——=———=
B -3

wliN
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and y-intercept, b = _% = _i =2

-3

| | | | | | |
-6-5-4-3-2 0 1 2 3 4 5 6

Parallel and Perpendicular Lines

Properties:

1. Two non-vertical lines are parallel if and only if they have the same slope.
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2. Two lines with slopes m, and m, are perpendicularifandonlyif mm, = -1,or M, = ——

Application Example

Given a triangle with vertices A(6,—7), B(11,-3) and C(2,-2)
triangle.

Slope of AB =L(_7) zﬂ
11-6 5

Slope of AC:L(_7)=£:_§
2—-6 -4 4

Since (Slope of AB)x (Slope of AC)= -1,
= AB and AC are perpendicular with each other.

. Use slopes to show that ABC is a right

AABC s a right triangle with the right angle at vertex A.

Modelling with Linear Equations: Slope as Rate of Change
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Example: When leather belts sell for $4.00 each at the flea market, handcrafters offer 200 belts for
sale each day. For each increase of $0.10 in the selling price, another 5 belts are supplied to the market.
Find the supply function as a linear function of price in terms of the number of belts supplied.

Solution: Let p be the price of each belt,
And Let g be the quantity of belts supplied.

Let the supply function be p=mq+b

We are told that when the price of each belt is $4.00, handcrafters offer 200 belts for sale each day.
This tells us that a point that lies on this straight line is

(q1,p1) = (200,4)

We are also told that each increase of $0.10 in the selling price results in another 5 belts being supplied.
Since price is denoted by the vertical axis and quantity is denoted by the horizontal axis, we have

rise = 0.1 and run=>5

__rise _ 0.1
5 50

And the slope is m=—=

run

The supply function is
p—p1=m(q—q1)

1
= p—4=-(q—200)
_ 1 200

=509 " S0

1
= p—4=5q—4

1
= p=:4

1.10 Making Models Using Variation
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Direct Variation
y = kx
Here, y is directly proportional to x, i.e. as x increases do does y increase.

Examples include
e Income tax payable to income earned.
e Interest earned to amount of money in savings account.
e Brightness from a light bulb to amount of voltage supplied to the light bulb.

Example

When converting between inches and centimetres, it is defined that 13 inches is the same length as 33.02
centimetres. Find the number of centimetres in 10 inches.

Solution: Since the length in centimetres is directly proportional to its equivalent in inches, we have
y = kx

Where y is length in centimetres
And  xits equivalent length in inches

We are given that whenx = 13 in, y = 33.02 cm

Thus, 33.02=£k x 13

33.02
> k=32
13

The modelis y = %x = 2.54x

When x = 10 in, its equivalent in centimetres is
y = 254x10 = 254cm
Something interesting: On the 1% of July 1959, the International Yard and Pound agreement was signed

whereby it was agreed that 1 yard = 0.9144 m = 91.44 cm exactly. This means that today, we can
convert 1 inch as exactly 2.54 cm. The same agreement also defined 1 [b = 0.453 592 37 kg exactly.

Inverse Variation
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_k
Y =%

Here, y is inversely proportional to x, i.e. if x increases, then y decreases. And if x decreases, then y
increases.

Example:

On a particular construction project, it takes 20 people 10 hours to complete a job. How many hours will
it take 25 people to complete this project?

Solution: Let y be the number of hours it takes to complete a job and x the number of people
working on the project.

This is an inverse proportion problem, i.e.
k
Y=z
When x =20,y =10
k
Therefore, 10 =—
= k=10x20=200

The modelis y = %

When x = 25,
y = % = 8 hours

It takes 25 people 8 hours to complete the job.

Joint Variation
Usually relationships between three or more variables are common.

For example,

x
z=k-—
y

In the above example, z is directly proportional to x and inversely proportional to y.
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Example: A moon that has a mass of 3 x 108 kg orbiting at a distance of 2 X 10® m away from the
centre of a particular planet feels a tug of 7.5 N. What is the force felt by another moon 4 x 10° kg
orbiting at a distance of 1 X 107 m away from the centre of this same planet?

Solution: We know from Newton’s Law of Universal Gravitation that a force felt by an object away
from another object is directly proportional to the mass of the first object and inversely proportional to
the square of the distance separating the two objects. Thus, our model can be written as
m
Where k is a constant coefficient,
m is the mass of the first object
And ris the distance between the two objects.

Giventhat F =75N, m=3Xx10%kg and r =2 X 10°m

3x108 . 3x10®

We have 75=k x107 — K oxtoo

_ 4 3x108
— Taxi012

=k x 0.75 x 10812
=k x075x107%

=k x75x%x107°

7.5

= 7.5X1075 =1x10°

The modelis F =1 X 105?2

The force felt by the other moon with mass m = 4 x 10° kg orbiting at a distance of r = 1 X 10" m is

4x10°
F=1x10°X ——
(1x107)2
_ 4x105%6  4x10?
T 12x107%2 T 1x1014

=4x101"1"=4x10"3N

2.1 What is a Function?
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Functions all around us
Examples:

[1] We go to the shop to buy apples. We select x number of apples and based on this number x, we
have to pay y dollars for those apples.

[2] In school, we notice that the weight y of a school child is proportional to the child’s height, x.
Definition

A function f(x) is a relationship that assigns to each element x in a set, called its domain, exactly
one element f(x) in another set, called its range.
It is quite common to denote the variable y as the function value, i.e. y = f(x)
Note: f(x) is read and understood as “f is a function in the variable x”. It is not f multiplies x.

Examples:

[1] We go to the shop to buy apples. We select x number of apples and based on this number x, we
have to pay y dollars for those apples.

Suppose each apple costs $0.50. So we can write the function as
y = $0.5x

[2] Converting the Fahrenheit scale to the Celcius scale:

C—S(F 32)
9

Evaluating a Function

When evaluating a function y = f(x), we replace the variable x with a value from its domain. And we
replace every occurrence of x with that value.

Examples:
Suppose we are given the function

flx)=2x*+3x-1
We wish to evaluate the functionatx = -2, x =aandx=a+h
So we have fx) = 2x2 + 3x -1
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¢ ¢ ¢ If we replace x with -2, we replace every
occurrence of x with -2
= f(=2)=2(-2*+3(-2)-1=1

Also, fx) = 2x2 + 3x -1
¢ ¢ ¢ If we replace x with a, we replace every
occurrence of x with a
= f@) = 222 + 3a -1

And fx) = 2x*» + 3x -1
¢ ¢ L If we replace x with a + h, we replace every
occurrence of x witha + h

= f@a+h)=2(a+h)?>+3(a+h)—1

The Domain of a Function

The domain of a function, f(x), is the set of all real numbers that we can possibly assign to the variable
X.

Rules of thumb:
To find the domain, we remember the following rules:
e The argument of an even function must be non-negative.

e The denominator must not be zero.
e The argument of a logarithmic function must be positive.

Examples: Find the domain of the function:
x+2
M =2

We must ensure that the denominator must not be zero, i.e.
x2—=1+#0
= x—Dx+1)+#0
= x—1+#0and x+1+0

= x#1and x # —1

xX+2
x2-1

Hence, the domain of f(x) = is all real numbers except —1 and 1, i.e.
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x<—-lor—-1<x<lorx>1

OR
x € (=, —1)U(-1,1) U (1,0)
[2] G(x) =vVx%2-9

We need the argument of an even root to be non-negative, i.e. here we need
x>=9>0 To solve this, please refer to Lecture 1.7.
= x<—-3o0orx=3 This is the domain of G(x) = Vx%2 —9

OR x € (—o0,—3] U [3,0)

xZ

Bl 0 =7=

We need the argument of an even root to be non-negative and the denominator to be non-zero, i.e.
6—x=0 and 6—x+0

= x <6 and X #6 Combining these two conditions give us

X
6—

7

= x<6 This is the domain of f(x) =

OR X € (—0,6)

Common ways to represent a function
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[1] Representing a function numerically

Example: World’s Population

Year Pop.ul_ation
(millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080

[2] Representing a function visually

1. Arrow diagram. We have two sets of numbers. We use arrows to connect numbers from one set

to numbers in another set based on what the function determines.

2
For example, Y = X". The arrows from the left set of numbers point to their respective square values
in the right set of numbers.
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2. Graphs. We use the Cartesian Coordinate System where for each x-coordinate within the domain,
the y-coordinate is determined by the value that the function returns.

Example: y= —Xx* +6x-3

Another example:

Suppose the graph below depicts a function y = f(x).

y

We canwrite  f(-3)=-3, f(0)=3, f(4)=1, ..
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2.2 Graphs of Functions

Graphing Functions by Plotting Points

The graph of a function y = f(x) is the set of ordered pairs (x,y) plotted on the Cartesian coordinate
system.

Example: Sketch the graph of the function using a table of ordered pairs.

[1] gx) = x? — 2x

Step #1: We calculate the y-coordinates given the x-coordinates.

x y=9gx)
-1 3
0 0
1 -1
2 0
3 3

Step #2: Then, we plot the points on the Cartesian coordinate system.
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Step #3: Finally, we join the points with a smooth curve.

y=x?%—-2x

Graphing Piecewise Functions

A piecewise function comes in more than one piece, i.e. different formulas are defined on different parts
of its domain.

Examples:
1. The absolute value function,
X, ifx=0
X = :
-X, Ifx<0
y
A
y=—x y=Xx
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—Xx ifx<0
2. fx)=44—x? if0<x<2
x—2 if x> 2

An important property for a relationship to be defined as a function:
Every x in the domain may relate to one and only one y.

But the reverse is not necessary for a relationship to be defined as a function. A y may relate to more
than one x in the domain.

So how do we test whether a relationship is a function or not? We perform what is known as the Vertical
Line Test.
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The Vertical Line Test: A curve in the xy-plane is the graph of a function of x if and only if no vertical line
intersects the curve more than once.

Examples:
1. y = i\/; is NOT a function.
y
A
| Vertical line cuts graph at
! / more than one place.
e -
0 :
2. y= \/; is a function.
y
A
i Vertical line cuts graph at
! only one place.
e .
0 :
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3. y= —\/; is a function.

> X

Vertical line cuts graph at
only one place.

Note: Even though /4 =2 or —2, when we write Y = \&, we refer to only the +ve values of y. If we

want the —ve values, then we write Y = —\/;.
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23 Getting Information from the Graph of a Function
Values of a Function

Suppose the graph below depicts a function y = f (x)

y

We canwrite  f(-3)=-3, f(0)=3, f(4)=1, ..

Increasing and Decreasing Functions
A function fis said to be increasing on an interval / if
f(x,)< f(x,) whenever x, < x, in/
It is said to be decreasing on / if

f(x,)> f(x,) whenever x, < x, in/
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In layman’s language:

If the part of the graph goes from bottom left to top right, then that part is increasing.
If the part of the graph goes from top left to bottom right, then that part is decreasing.

y
A
6__
5+ This part is
4- decreasing.
. . A
This part is 3
Increasing. 2 This part is also
N 1 increasing.
P e e A S N w2
—6-6-4-3-200 1 7 3 We
—_21
— 3+
— 41
— 64+
— 6+
Another way of saying it is:
On a particular interval,
1. If x increases and y also increases, then the function on this interval is increasing.
2. If x increases but y decreases, then the function on this interval is decreasing.

Local Maximum and Minimum Values of a Function
Definition:

A function f has a local or relative maximum at c if f(c)z f(x) when x is near, or within the

neighbourhood of, c.
Similarly, f has a local or relative minimum at c if f(c)< f(x) when x is near, or within the

neighbourhood of, c.
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Example in the graph below:

y=3x"-16x° +18%°, x < [~ 1,4]

Absolute
maximum

30 |

20 F

Local maximum,

f()=o0

Local minimum, ¢

£)=0

# |

Local minimum, 7'(3)=0,
Absolute minimum
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2.4 Average Rate of Change of a Function

Let us look at the graph of y = f(x) where point P(x,, f(x,)) changes to point Q(x,, f(x,)) when
there is a change in the value of x.

Y

4

f(xz )

v
x

Ax

When x changes in value from x, to x,, the change in xis
AX = X, — X,

and the corresponding change in y is
Ay = f(x,)— f(x,)

The slope of the secant line PQ is the quotient

_E:ﬂ: f(Xz)_ f(Xl)

"®7 Run  Ax X, — X,

called the Average Rate of Change of y with respect to x over the interval [x,, x, |.

Examples:
[1] If you travel 100 miles in two hours, then your average speed for the trip is
2 Speed 100 miles 50 mil B
v eed = ——— = 50 miles per hour
erage >p 2 hours p
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[2] The average rate of change of the function f(x) = x? betweenx = 2and x = 6 is

X2) —Jx
Average rate of change = fl) — f()
xZ —_ x1
Wherewelet x;, =2 and x, =6.

Thus, Average rate of change = %

6227
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2.5 Transformations of Functions

Vertical and Horizontal Shifts: Suppose we know what the graph of y = f(x) looks like and suppose we
are given C > 0. To obtain the graph of

i. y = f(x)+ c, shift the graph of y = f(x) a distance of c units upward

i. y = f(x)—c, shift the graph of y = f(x) a distance of ¢ units downward
iii. y = f(x—c), shift the graph of y = f(x) a distance of c units to the right
iv. y = f(x +c), shift the graph of y = f(x) a distance of c units to the left

Reflecting about the x-axis and the y-axis: Suppose we know what the graph of y = f(x) looks like.
Then, to obtain the graph of

i. y = —f(x), reflect the graph of y = f(x) about the x-axis

. y = f (- x), reflect the graph of y = f(x) about the y-axis

Vertical and Horizontal Stretching and Shrinking: Suppose we know what the graph of y = f(x) looks

like and suppose we are given C > 1. To obtain the graph of
i. y = cf (x), stretch the graph of y = f(x) vertically by a factor of ¢

ii. y = 1 f (x), compress the graph of y = f(x) vertically by a factor of ¢
C

iii. y = f(cx), compress the graph of y = f(x) horizontally by a factor of ¢

X
iv. y=f [E] , stretch the graph of y = f(x) horizontally by a factor of ¢

Examples of combining shifting, stretching and reflecting of graphs

[1] Sketch the graph of Y =1-2x-X?

Before we perform any transformation from the standard function y = x2, we need to rewrite y =
1 — 2x — x? into the form y = a(x — h)? + k, i.e. we need to complete the squares.
y=1-2x—x?

=—x?-2x+1
—(x2+2x)+1
—(x?+2x+1-1D+1
—(x?+2x+ D+ (DD +1
—(x?+2x+1)+1+1
(x> +2x+1)+2
=—(x+1)?%+2

2
Now, we can start with Y = X" This is a “smiley” curve with its vertex at the origin O(0,0).

y
106



We perform the following transformations:

2
1. Reflecting of the graph about the x-axis. The graph becomes Y = —X".

y
A

2
2. Shifting of the graph upward by 2 units. This givesus Y =—X"+ 2,
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2 y=—x"+2

I

v
x

3. Shifting of the previous graph leftwards by 1 unit. This transforms the above graph to that of
y=—-(x+1)>%*+2

The x-axis intersections are calculated from
—-x+1D*+2=0
= (x+1)?2=2
= x+1=vV2orx+1=—-/2
> x=—1+V2orx=-1-+2

y
A

AN

<
I
L
-
-
\\\g
(W]
4
v
x

[2] Another example: y = ‘Xz — ZX‘
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First of all, we sketch the graph of the function without the absolute sign, i.e.
y=x* - 2X
= y=x"-2x+1-1=(x-1f -1

2
Since the function involves a quadratic, we start with the graph of Y = X

y
A

In order to change the graph to thatof y = ‘XZ — 2X|, we employ the following transformations:

2 2
1. We shift the graph of ¥ = X" one unit to the right. This gives us the graph of Y = (X —l)

y
A
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2. Then, we shift the graph one unit downward. This gives us the graph of

y=(x-1) -1=x2 - 2x

y
A
2
y=(x-1)" -1
» X
(0] 2
-1 +
3. Finally, we reflect the part of the graph below the x-axis, or where y is —ve, about the x-axis. This

ensures that whatever is —ve in the range becomes +ve just like what the absolute function does. Recall
that the absolute function changes a negative value into its positive counterpart.

y:‘(x—l)2 —l‘:‘xz —2x|

v
x
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Even and Odd Functions
1. Even function

A function is called an even function if it satisfies
f(—x)= f(x)

The graph of an even function is symmetric about the y-axis.

Example: f(X)Z x°

How do we show it is even? We replace x with —x in the function.

It is an even function because it satisfies the even function test.

Notice that the left and right sides of the graph are reflections about the y-axis.
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Another example: f(X): X

We replace x with —x,

This is an even function.

Once again, notice that the graph is symmetric about the y-axis.

2. Odd function

A function is called an odd function if it satisfies
f(—x)=—1(x)

The graph of an odd function is point symmetric about O(0,0).

Example: f (X) =x°
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Notice that the graph overlaps onto itself again after a 180° turn about the origin O(0,0).
Another example: f (X) = X|X|

= f(=x)=-X-x=-xx=-f(x)

This is an odd function

Once again, notice that the graph overlaps onto itself again after a 180° turn about O(0,0).
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2.6 Combining Functions
Sums, Differences, Products and Quotients

Similar way to adding, subtracting, multiplying and dividing numbers.
L (f £g)x)=f(x)£g(x)
2. (fg)(x) = f(x)g(x)

iX=M'rovie X)#
> (9)() glx) * Preved b =0

If the domain of f (x) is A and the domain of g(x) is B,

i. the domain of f(x)+ g(x) and (fg)(x)is AN B

i the domain of (ij(x) isalso AN B provided g(x) =0
g

Example:

Given f(x)=+/3-x and g(x)=+x*-1.

From f(x)=+/3-x

To find its domain, we know that 3— X >0
= x<3
= Xe (— oo,3]

From g(x)=+x* -1

To find its domain, we know that x> —1> 0

= x2>1

= X >1

= X>1orx<-1

=  xe(-w-1]ul,®)

. (f+9)x)= f(x)+g(x)=+/3=x++/x? -1
i, (f—g)x)=f(x)-g(x)=+/3-x-x*-1
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ii. (fg)(x)= f(x)g(x)=~3—x x/x* -1

The domain for (i), (i) and (iii) is X € {(— oo,3]}m {(— oo,—l]u [1, oo)}
= Xe (— oo,—l]u [1,3]

f(x) +3-x

R =

The domain for (iv) is similar to the domain for (i), (ii) and (iii) with the added condition that g(x) #0.

Therefore, x> =1#0
= X#-1and X#1.
The domain for (iv) therefore is X € (— oo,—l)u (1,3]

Compositions of Functions
Definition

Given two functions f and g, the composite function f o g, also called the composition of f and g, is
defined by

(fog)x)=f(g(x))
This means we substitute x with g(x) where every x occurs in f.

The domain of f o g is the set of all x in the domain of g(x) such that g(x) is in the domain of f (X)

Examples:
Given functions f(x) = x? + 2x — 1 and g(x) = 2x + 1.
L (feg@=f(gW)
=f2x+1)
=Qx+1)?+22x+1)—1

How does it work? We replace every where x occurs in f with the new expression of the variable. In this
case, we replace x with 2x + 1.

flx) = x2  + 2 -1
\b x is replaced with 2x + 1
= f@Cx+1)=CQx+1)*+22x+1)—-1
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Continuing,
Feg)@)=Rx+1)?+2Q2x+1)—1
=4x?+4x+1+4x+2-1

=4x% +8x+2

2. (ge° ) =g(f(x)
=g(x?+2x—1)

=2(x*+2x—-1)—-1

Here again, we replace every where that x occurs in g with the new expression of the variable.

case, we replace x with x? + 2x — 1.
gx) = 2x +1
x is replaced with x% + 2x — 1
= gx?+2x—1)=2(x*+2x-1)+1
Continuing,
gx?+2x—1)=2(x*+2x-1+1

=2x2+4x—-2+1

=2x2+4x—-1

3. (FoPNW=f(f(0)
=f(x2+2x-1)
=(?+2x—1D2+2(x*2+2x—-1)—-1
=x*+4x2+1+4x3 - 2x%2 —4x+2x*+4x—-2-1
We use theidentity:  (a+ b+ ¢)? = a? + b? + ¢? + 2ab + 2ac + 2bc
Continuing,
fx?2+2x—1)=x*+4x? +1+4x3 - 2x? —4x +2x%> +4x—2—1

=x*+4x3 +4x2 -2
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4, (g°9)(x) =g(g)
=g2x+1)
=22x+ 1) +1

=4x+2+1=4x+3

Decomposing a Composite Function

This is the opposite of getting a composite function. Suppose we are given a function that is a composite
of two functions, i.e. h(x) = f(g(x)). Our task now is to find what the functions f(x) and g(x) are.

The decomposition of a function is not unique. There can be more than one possibility for f(x) and g(x)
given h(x).

The technique to getting the decomposition is to
e Let g(x) take the form of the inner expression

e And f(x) take the form of the outer expression.

Example:

Write the function given by h(x) = as a composition of two functions.

1
(x-2)2
One possible solution:

We can take the inner expression as
gx)y=x-2

And the outer expression becomes

f@) ==
Checking: By taking h(x) = f(g(x)), we have
h(x) = f(x—2)
!
T (x-2)?
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Another possible solution:

We take the inner expression as

g(x) = (x —2)*
And the outer expression becomes

1

fe =12

X

Checking: By taking h(x) = f(g(x)), we have

h(x) = f((x —2)*)

_ 1
T (x-2)2

Application example

A stone is dropped in a lake, creating a circular ripple that travels outward at a speed of 60 cm/s.

(a) Find a function g that models the radius as a function of time.

(b) Find a function f that models the area of the circle as a function of the radius.
(c) Find f o g. What does this function represent?

Solutions:

[a] g(t) = 60t cm, where tis in seconds

[b] f(r) = mr?, where ris the radius of the circle.

[l fog=f(9®)=n(g®)* =m(60t)? = 3600mt2

This is the area of the circle at time t seconds.
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2.7 One-to-one Functions and Their Inverses
We already know that when we have a function
y=f(x)
We put a value of x into the function and get a value of y out of it.

For example:
| go to the shop to buy apples. | want to buy four apples. How much will it cost me?

The opposite can also happen. If we are given the value of y, we would like to know which value of x will
give us this value of y.

Opposite of the above example:
| go to the shop to buy apples. | want to buy $5.00 worth of apples. How many apples can | get from that
$5.00?

So we need what is known as an inverse function of f (X), which we can write as

x=17"(y)

Important Note:

One-to-one function
A function fis called a one-to-one function if it never takes on the same value twice; that is,
f(x)= f(x,) whenever X, # X,
Recall that for a relationship to be defined as a function, for every x, there can only be one corresponding

y. All functions, including one-to-one functions, have this characteristic. They must pass the vertical line
test.

One-to-one functions have an extra characteristic, i.e. for every y, there can only be one corresponding x.

One-to-one functions must also pass the horizontal line test.

Horizontal Line Test
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A function is one-to-one if and only if no horizontal line intersects its graph more than once.
Example: Yy = x? is not a one-to-one function because there are horizontal lines that intersect the graph
more than once.

0.6 [ ‘\
o.. |/ Horizontal line intersects

graph more than once.

Another example: Y = x* is a one-to-one function because there are no horizontal lines that intersect

R

XA

N

the graph more than once.

All horizontal lines
intersect the graph only
once.

Some functions are not one-to-one on its entire domain. But it may be a one-to-one function on part of
its domain.

Example: Y = X’ is one-to-one on X >0 or X € [0,)

15
12.5

10
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and y = X’ is also one-to-one on X <0 or X € (— 00,0]

15 |
12.5

10 |

By definition:
Only one-to-one functions possess inverse functions.

Domain and Range of an inverse function

Let f be a one-to-one function with domain A and range B. Then its inverse function f  has domain B
and range A and is defined by

f'y)=x <  fx)=y
foranyyin B.
What the above says is:
e The domain of a one-to-one function becomes the range of its inverse function.
e The range of a one-to-one function becomes the domain of its inverse function.
We usually write the inverse function as
f(x)=y
because we are used to using x as the symbol of the independent variable and y as the symbol of the

dependent variable.

What does an inverse function do?
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f8)=-10 < f*(-10)=8

Common sense (I hope) and cancellation equations:

For every f (X) that is a one-to-one function with domain A and range B, we have
f(f(x)=x, for xe A

and f(f ’1(X))= X, for xeB

How to find the inverse function of a one-to-one function f (X)

1. Write y = f(x)

2. Rewrite the equation as x in terms of y (if possible)

3. Interchange x and y. This givesus y = f _I(X)
Examples:

Find a formula for the inverse of the function.

4x -1
1 f(x)=
- &) 2X+3
i. write y = f(x)
_4x-1
Y= ox+3

ii. Rewrite the equation as x in terms of y.

4x -1
From, y=

2X+3
= y(2x+3)=4x-1
= 2xy +3y =4x-1
= 4x —-2xy =3y +1
=  2x(2-y)=3y+1
N _ 3y+1

2(2-y)
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iii. Interchange x and y.
From step ii, after interchanging x and y, we have

3x+1
2(2-x)
a 3x+1
TP

Graph of the inverse function

The graph of f _I(X) is obtained by reflecting the graph of f (X) about the line y = X.

Example:

The inverse of f(x)=x"is f(x)=¥/x.
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3.1 Quadratic Functions and Models
Quadratic functions are polynomials of degree two.
f(x) =ax?®+ bx +c wherea #0

is a quadratic function.

Graphing Quadratic Functions Using the Standard Form

Properties of quadratic functions

1. All quadratic functions f(x) = ax? + bx + ¢
can be rewritten as fx)=al(x-h)?+k (The Standard Form of a Quadratic Function)
by performing the Completing The Square process.

The vertex of the parabola is always (h, k).

2. All quadratic functions yield parabolic graphs. There are two possibilities

i Concave upward graphs

These occur when a > 0.

(h.k)
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ii. Concave downward graphs

These occur when a < 0.

(h.k)

Completing the Square
Examples:
Rewrite the following quadratic functions in standard form:
1. f(x)=ax®*+bx+c
Step #1: We factor out the coefficient of x?, i.e. a, from the first two terms.
f(x) =ax®*+bx+c
=a (x2 + Zx) +c
Step #2: Take the coefficient of x within the brackets, i.e. Z, and halve it.

2a

Step #3: Square the result from Step #2, i.e. we square 2% .
b\% b2
) ==
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2
Step #4: Add and subtract the result from Step #3, i.e. (b ) , within the brackets.

2a

flx) = a(x2 +§x)+c
= a(x2 +§x+ (2%)2 —(%)2)+c

2 2
a(x2+§x+b——b—)+c

4a2  4a?

Step #5: Take the last term out of the expression within the brackets. Or we can think of this step as
2 2

distributing a into x? + Px+ b—z and into — b—z.
a 4a 4a

2 2
f(X)=a(x2+§x+b— i )+c

4a?2  4a?

240 i) (_b_z)
a(x tox+ + (a) +c

2 2
a(x2+2x+b—2)—b—+c
a 4a

Step #6: The expression within the brackets is a perfect square.

2 2
f(x)=a(x2+gx+b—)—b—+c

4q? 4a

2 2
=a(x+£) +c-Z
2a 4a

f(x)=ax®*+bx+c

2
The vertex for this quadratic’s parabola is at the point (h, k) = (— %, c— Z—a) .
. b
Notice that when x = ——,
2a
b b | b\? b?
f-m)=al-5+53m) +o-5
—a(0)?+c-L=c-L
4 4a
b b?
= f(m)=ca
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. . b
The vertex for this quadratic’s parabola can also be calculated as (— Z'f(

. b?
Or we can also rewrite k = ¢ — e

bZ
= —al|—
¢ (4a2)

(-2)
=c—al——
2a
=c—ah?

In summary, we have the vertex of the parabola (h, k) where

_ b
T 2a
and
b2
k=C—%
or
e=£(-3)
N 2a
or
k = c —ah?
2. f(x)=x2+3x+i

Step #1: We factor out the coefficient of x2, i.e. 1, from the first two terms.

f(x):x2+3x+%

=(x2+3x)+i

Step #2: Take the coefficient of x within the brackets, i.e. 3, and halve it.

3
2

Step #3: Square the result from Step #2, i.e. we square 3 .

2
Step #4: Add and subtract the result from Step #3, i.e. (3) , within the brackets.

2

0= (524304 €'~ () 43
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=(x2+3x+3—3)+l
PR

Step #5: Take the last term out of the expression within the brackets.

Step #6: The expression within the brackets is a perfect square.

f(x):(x2+3x+§)—2
:(x+§)2—2
fG) = x? +3x +
= (x+3) -2
f=(x~(-) -2

The graph of this quadratic’s parabola is concave up, since a = 1 which is positive, and this parabola has
a vertex at (—E, —2).
2
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3. f(x)=-x2+2x+5
Step #1: We factor out the coefficient of x?, i.e. —1, from the first two terms.
flx)=-x*42x+5
=—(x?-2x)+5
Step #2: Take the coefficient of x within the brackets, i.e. —2, and halve it.
- = -1
Step #3: Square the result from Step #2, i.e. we square —1.
(-D*=1
Step #4: Add and subtract the result from Step #3, i.e. (—1)?, within the brackets.
) = =@ =25+ (-1)? = (1)) +5
=—(x2-2x+1-1)+5
Step #5: Take the last term out of the expression within the brackets.
f)=—-x*-2x+1)—-(-1)+5
=—(x?-2x+1)+1+5
=—(x*-2x+1)+6
Step #6: The expression within the brackets is a perfect square.
f)=—-(x?-2x+1)+6
=—(x—1?+6
f(x)=—x?4+2x+5
=—(x—1?+6

The graph of this quadratic’s parabola is concave down, since a = —1 which is negative, and this parabola
has a vertex at (1,6).
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4. fx)=2x2—x+1
Step #1: We factor out the coefficient of x?, i.e. 2, from the first two terms.
flx)=2x?-x+1
_ 2 1
=2 (x 2x) +1

Step #2: Take the coefficient of x within the brackets, i.e. — %, and halve it.

|
Nl
-

Step #3: Square the result from Step #2,i.e. —1.

(-3 =4
4) 16

2
Step #4: Add and subtract the result from Step #3, i.e. (— %) , within the brackets.

9 =2(xt e (- (-2))

=2(x2—%x+i— )+1

L
16
Step #5: Take the last term out of the expression within the brackets.

_ 2_1 1i_1
f(x)—Z(x 2x+16 16)+1

Z(xz—%x+1—16)+2(—1—16)+1

2(x~1x b 2)-141
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Step #6: The expression within the brackets is a perfect square.

f(x)=2(x2—%x+%)+g

2 (=) 45

flx)=2x?-x+1

I
N}
Vo
=
|
S
N—
[\S}
+
™I~

The graph of this quadratic’s parabola is concave up, since a = 2 which is positive, and this parabola has

17
a vertex at (—,—).
4’8

15+

Modelling with Quadratic Functions
Example
[1] Fencing a Dog Run | have 2400 ft of fencing to contain a rectangular dog run.

(a) Find a function that models the area of the dog run in terms of the width x of the dog run.
(b) Find the dimensions of the rectangle that maximise the area of the dog run.
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Solution: Let x be the width and y be the length of the dog run,

length =y

width = x
(a) Let A be the area of the corral that we want to maximise,
A=xy - (1)
| have 2400 ft of fencing, therefore the perimeter of the dog run must be
x+y+x+y=2400
= 2x + 2x = 2400

= 2(x +y) = 2400

> x+y=22=1200

= y=1200 —x . (2)
Substituting (2) into (1),
A=xy
= A=x(1200-x)
= —x2+1200x
This is a quadratic function witha = —1, b = 1200 and ¢ = 0.

Since a < 0, meaning it draws a concave down parabola. Its vertex, (h, k), gives us the maximum point.

. _ b b?
To find the vertex, (h, k) = (— 72 €~ E)
Thus, h=-—L2 - _129 _¢no
2a 2(-1)
2 2 2 2
And k=c—2 = 1200 _ 12000 _ (1200) — 6002 = 360000
4a 4(-1) 22 2

The dimensions that maximise the area of the dog run are

Width,x = h = 600 ft

132



And Length,y = 1200 — x = 1200 — 600 = 600 ft , from (2).

The maximum areais k = 360000 ft2
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3.2 Polynomial Functions and Their Graphs
Polynomial Functions
A polynomial function of degree n has the form
P(x) = apx™+ ay_1x" 1+ a,_,x" 2+ -+ ayx? +a;x +ag
Where n is a non-negative integer,

a,x™ isthe leading term,
a, # 0 is the leading coefficient,

And aqgp is the constant term.

Examples:
f(x) =2x3— %xz +0.03x -5 is a polynomial of degree 3.
f(x) = 2x? +§ =1 is not a polynomial.
fx)=3x3+2J/x-3 is not a polynomial.

Graphing Basic Polynomial Functions

Graphs of y = x™

1. When n is even, the graph of y = x™ looks almost similar to the graph of y = x2.
y
y=x*
— n
[, —y=x", neven
X
(0]

134



2. When n is odd, the graph of y = x™ looks almost similar to the graph of y = x3

y
y=x°
5 b%
| y=x", nodd
.

Note: In both cases, the graphs of y = x™ are flatter at the origin 0(0,0). The greater n is, the flatter the
graph.
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End Behaviour and the Leading Term

The orientation of the two ends of the graph of a polynomial

p(x) = apx™ + ap_1x" 1+ 4 ayx® + agx + ag

depends on 4 conditions:
1. When nis odd and a,, > 0:

y

As x - —oo,
f(x) > —
0
2. Whennisoddanda,, <0
y
As x - —oo,

f(x) = \
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3. When nis evenanda, > 0

y
Asx —» —oo, As x > oo,
f(x) = f(x) =
I,\\ II
\ ! \ /
\ 1 \ 7
\ ! \ ,
\ / \ 7
S N L
(0]
4, Whennisevenanda, <0
y
,’\ 77N
\ /7 \
// \ ’ \
/ \ ’ \
’ \ ’ ‘\
/
\\/ \
A — 00
Asx - —o X !
(x) » —o0
flx) - -
(0]

Notation:

If a polynomial P(x) is such that P(¢) = 0, then we can say that
[1] cisazeroof P

[2] x = cis a solution or root of P(x) = 0

[3] x — cis a factor of P(x)

[4] cis an x-intercept of the graph of P.
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Zeroes of Polynomial Functions
A polynomial of degree n

f(x) = apx™ + ap_1x" 1+ 4 ayx® + a;x + ag
has the following properties:

1. All polynomials are continuous functions on (—o, ), i.e. the graphs of all polynomials can be
drawn without lifting pen from paper.

2. All polynomials have graphs that are smooth.
3. A polynomial of degree n has at the most n real zeroes.
4, Local Extrema of Polynomials: The graph of a polynomial of degree n has at the most n — 1

number of turning points, or local (relative) maximum or local (relative) minimum points.
Suppose x = a is a zero of the polynomial. This means that this polynomial has a factor
(x —a)¥, where k > 0

Two possibilities happen here:

1. If k is odd, then the graph of the polynomial crosses the x-axis at x = a.
2. If k is even, then the graph of the polynomial touches the x-axis but does not cross the x-axis at
X =a.

Note: kis known as the multiplicity of the factor.
We will use these information to sketch the graph of a polynomial.
Example:
Sketch the graph of y = 2(x — 1)(x + 1)2.
1. The Leading Coefficient Test.

By expanding the polynomial, we obtain

y=2(x—1)(x+1)2
=2x3 +2x% — 2x — 2
We can see that the polynomial is of odd degree, n = 3

and the leading coefficient is positive, i.e.a, =2 > 0
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The two ends of the graph will have the following orientation:

y
As x — oo,
PN fx) > o0
,/ \\
/// \\ //
/ R /
As x — —0o, \\ - e
fx) > —
o) X
Zeroes of the Polynomial
Let y=2x-Dx+1%?=0
= x—1=0orx+1=0
= x =1 or x = —1 are the zeroes of the polynomial.

The zero x = 1 is of odd multiplicity because the exponent of x — 1 is odd.

= The graph crosses the x-axisat x = 1
The zero x = —1 is of even multiplicity because the exponent of x 4+ 1 is even.
= The graph touches but does not cross the x-axisat x = —1

Sign table of the polynomial function

We divide the number line into intervals based on the zeroes of the polynomial, i.e. (—o0,—1),
(—=1,1) and (1, ). Then, on each interval we determine where does the graph fall. Does the
graph fall below or above the x-axis?

We can easily determine this for each interval by taking any point of x within that interval as a test
point.

Interval (—o0,—1) (-1,1) (1, )
Test value x=-2 x=0 x=2
Function value at test
point f(=2)=-6 f(0)=-2 f(2) =18
Sign of f(x) —ve —ve +ve
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4, Determine the y-intercept
When x = 0, we have f(0) = —2.

The graph intersects the y-axis at (0, —2)

5. Sketch the graph

y=2(x—-1)(x+1)2

—1 0/1

The Immediate Value Theorem

Let a and b be real numbers such that a < b. If fis a continuous function on the interval [a, b] such that
f(a) # f(b), then f takes on every value between f(a) and f(b) on the interval [a, b].

v
x
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Application of the Intermediate Value Theorem:

If we are given a continuous function f(x), and f(a) and f(b) have opposite signs,
i.e. either f(a) = +ve and f(b) = —ve,

or f(a) = —ve and f(b) = +ve,
then there must exist at least one value c where a < ¢ < b such that f(c) = 0.

Example:
Show that the function f(x) = x3 — x2 + 1 has at least one zero between x = —1 and x = 0.
Solution: F-D)=(-1)3-(-1)2+1=-1-1+1=—1

f(0)=0-0*+1=1
We can see that f(—1) < 0 < f(0). Since f(x) is a polynomial and therefore continuous, we can

conclude from the Intermediate Value Theorem that there must be at least one point between x = —1
and x = 0 where the value of the function is zero.

Graphof f(x) = x3 —x2 + 1:
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3.3 Dividing Polynomials
A rational function is defined as
fo =55
Where both N(x) and D(x) are polynomials,
and D(x) # 0 on the domain of f(x).
We define proper rationals and improper rationals as follows:
o |If deg(N(x)) < deg(D (x)), then this rational is proper.

o |If deg(N(x)) > deg(D (x)), then this rational is improper.

Examples:
2x+3 . . .
1. x2f3x+4 is a proper rational because the degree of the numerator is less than the degree
of the denominator.
2x%+1 . . . .
2. rnrd is an improper rational because the degree of the numerator is equal to the
degree of the denominator.
2x3+3 . . . .
3. x2f3x+4 is also an improper rational because the degree of the numerator is greater than

the degree of the denominator.

if 2

Given an improper rational, we can obtain a proper rational term from it by performing a division. presy

is an improper rational, we can perform a division to rewrite it as

163}
q(x)

% =s(x) +
Where p(x) is the Dividend,

q(x) is the Divisor,

s(x) is the Quotient,

t(x) is the Remainder

And :((—J;)) is a proper rational expression.
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Long Division of Polynomials

Examples:

x*-3x2-1 _ x*+0x3-3x2+0x-1
x2+5 x2+40x+5

Since the divisor is not a linear factor, the safest way to perform this division is by using the long division
method.

x? + Ox — 8
x? + 0x + 5 x* + 0x3 - 3x2 + 0x - 1
x* + 0x3 + 5x2
- 8x? + 0x — 1
- 8x? 4+ 0x — 40
+ 39
x*-3x2-1 5 39
x2+5 =X 8-I_x2+5
3x24+1 3x24+0x+1
2. > =—;
xX4+x+9 X4+x+9
3
x? + X + 9 3x2 + Ox + 1
3x? + 3x + 27
- 3x — 26
3x2+1 -3x-26
x24x+9 x2+x+9
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Synthetic Division

S . e . . P
If the divisor is linear, i.e. x — ¢, we can safely use a synthetic division to divide polynomials, % .

Remainder and Factor Theorems

Remainder Theorem:
If a polynomial P(x) is divided by x — c, then the remainder is P(c)

Factor Theorem:
If cis azeroof P,i.e. P(c) = 0, then x — c is a factor of P(x).

Examples:
4_ 3402 on
3. %13“ where P(x) = x* — x3 + x? — 3x — 6 is divided by x — 1.
1 1 -1 1 -3 —6
1 0 1 -2
1 0 1 -2 -8

The remainder tells us that
P(1) =-8

x*—x3+x2-3x-6
x—1

=340 +x—2+—
x-1

8
=x}+x—-2—-—
x-1

= x*—x3+x?-3x-6=(3+x-2)(x—1)—8

x3-2x%+3x-6
x—2

2 1 -2 3 -6

1 0 3 C%D

Remainder = 0
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x3-2x%24+3x-6
x—2

= x24+0x+3+—
x-2
=x%+3

x3—-2x2+3x—-6=(x?*+3)(x—2)
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3.4 Real Zeroes of Polynomials
Rational Zeroes Theorem
Given the polynomial
f(xX) = apx™ + ap_1x" T+ +ax® +a;x +ag
The possible real zeroes are

Factors of constant term, a,

Factors of leading coef ficient, a,

Let us say we have a value x = k as a possible real zero. To determine whether x = k is indeed a real
zero of the polynomial or not, we can perform either one of the following two tasks:

e Assign x = k to the polynomial. If the result is zero, then this value x = k is indeed a real zero of
the polynomial.

e Perform a division using x — k as the divisor if using long division, or x = k if using synthetic
division. If the remainder is zero, then x = k is indeed a real zero of the polynomial.
Example: Find the zeroes of f(x) = x* —x3+x?—-3x—6
Solution: We want to solve for xwhen f(x) = x* —x3+x? - 3x—-6=0

The possible real zeroes are
Factors of constant term, a,

Factors of leading coefficient, a,

H
I+
I+

1, 3,6

[EN

2,
t+

-+
-+
-+

=41,+2,+3,16

Let us try and see whether x = 1 is a zero of the polynomial. We can perform a synthetic division:

1 1 -1 1 -3 -6
1 0 1 —2

1 0 1 -2 Q?

Remainder # 0

Since the remainder is not zero, this shows that x = 1 is not a zero of the polynomial.
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Let us now try and see whether x = —1 is a zero of the polynomial. We perform a synthetic division:

-1 1 -1 1 -3 -6
-3 6

1 —2 3 —6 Q%)

Remainder =0

|
=
N

The remainder is zero, indicating that x = —1 is a zero of the polynomial. This also indicates that x + 1
is a factor of the polynomial. And from the division above, we can deduce that

f)=x*—x3+x2-3x-6
=(x+1)(x3—-2x>+3x—6)

Now, let us check and see whether x = 2 is a zero of the quotient x3 — 2x? + 3x — 6, we perform a
synthetic division on it.

2 1 -2 3 -6

Remainder =0

As the remainder is zero, this indicates that x = 2 is a zero of the quotient x3 — 2x2 + 3x — 6. This also
indicates that x — 2 is a factor of this quotient.

Therefore, we conclude that when
f)=x*—x3+x2-3x—-6=0
= (x+1Dx3-2x2+3x—-6)=0
= (x+1Dx-2)x2+3)=0
= x+1=0,x—2=00rx>+3=0
= x=—-1,x=2o0rx?=-3
But since x? cannot be negative, the only real zeroes of the polynomial are

x=—-1lorx=2
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Application example:

An open box with a volume of 1500 cm? is to be constructed by taking a piece of

cardboard 20 cm by 40 cm, cutting squares of side length x cm from each corner and folding up the sides.
Show that this can be done in two different ways and find the exact dimensions of the box in each case.

Solutions:

20cm

The diagram

__________

x

___________

The volume of the box is

(40 — 2x)(20 — 2x)(x) = 1500

40 -2x

For the box to be defined, we need all the dimensions to be non-zero, i.e.

=
=
=

Continuing,

=

=

=

Factors of —375 are +3, +5, +15, +25, +75, +125 and +375.

Factors of 1 are

x>0 and 40—2x>0 and 20—2x>0

x>0 and 2x < 40 and 2x < 20

x>0 and x <20 and x <10

20-2x

0 <x <10 ; Combiningall the above three conditions gives us the domain.

(40 — 2x)(20 — 2x)(x) = 1500

(2)(20 —x)(2)(10 = x)(x) = 1500

1500

(x)(20—x)(10 —x) = o

=375

(x)(200 — 30x + x?) = 375
200x — 30x% + x> =375

x3 —30x%+4200x —375=0

+1.
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Hence, possible roots of the above equation are

Factors of constant term, a,

Factors of leading coef ficient, a,

_ £3,45,415,425,+75,+125,+375
B +1

= 43, +5, +15, +25, +75, +125, +375
Let’'stry x = 3.

3 1 —30 200 —375
3 —81 357

1 —27 119 Q%@

Remainder # 0

Since the remainder when x = 3 is not zero, we conclude that x = 3 is not a solution.
Now let’'stryx = 5

5 1 —30 200 —375
5 —125 375

1 —25 75 Q/c;)

Remainder =0

Since the remainder when x = 5 is zero, we conclude that x = 5 is a solution.

And therefore, x — 5 is a factor of the polynomial. And the above synthetic division tells us that
x3 —30x% 4+ 200x — 375 = (x — 5)(x? — 25x + 75)

And when

x3 —30x%+4200x —375=0

= (x—=5)(x?—-25x+75)=0

—-b+Vb?-4ac
= x—5=0 or x = —2ZVb7-4ac
2a
—(~28)+/ (=282 =4 (D) (75)
= x=5 or  x = Z2DE/C292-4WES)
2(1)
= x=5 or — 25++/325 _ 25+,/(25)(13) _ 25+513

2 2 2
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25-5v13 25+5v13
X =————-7 or X =————-

= x=5 or
2 2
But we can see that 25+;‘>\/ﬁ = 12.5 + 2.5 ¥ /13 > 10 which means it is outside the domain of the box.
Hence, we cannot accept x = #ﬁ as a solution.
. . 25-5113
So the only two possible solutionsare x =5 or x = =12.5—-2.5v13

2

The dimensions of the box are

(1) When Height =x =5cm,
Length = 40 —2x =40 —2(5) =30 cm

Width = 20 — 2x = 20 — 2(5) = 10 cm

(2) When Height = x = 12.5 — 2.5v13 = 2.5(5 = V13) cm
Length = 40 — 2x = 40 — 2(12.5 — 2.5V13) = 40 — 25 + 5V13 = 15 + 5V13 = 5(3 + V13) cm

Width = 20 — 2x = 20 — 2(12.5 — 2.5v13) =20 — 25+ 5V13 = 5¥13 -5 = 5(vV13 — 1) cm
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3.5 Rational Functions

. . __ P(x) . P(x) . . .
All rational functions f(x) = G provided that ) is irreducible,
. . P(x) _ t(x)
i. Can be written as o s(x) + )

ii. Have asymptotes.

e The vertical asymptotes are given by the solutionsto Q(x) =0
e The non-vertical asymptote is given by y = s(x).

A rational function will have at the very least one non-vertical asymptote.

Examples:
1
(1] y=:

This can be written as % =0 +%

e The vertical asymptoteis x =0
e The non-vertical asymptoteis y =0

To find where the parts of the graph lie, we generate a value table. The domain is divided by the vertical
asymptotes and where the graph intersects the non-vertical asymptote, if any:

Interval x<0 x>0

x-coordinate test value x=-—1 x=1

Value of y = 1 1 =—-1 1 =1
YT -1 1

We conclude that:
e The graph to the left of the vertical asymptote lies below the non-vertical asymptote.
e The graph to the right of the vertical asymptote lies above the non-vertical asymptote.

151



Graph of yz%:

21 y=5

, . 1 1
This can be writtenas — =0+ =
X X

e The vertical asymptote is the solutiontox? =0 = x = 0
e The non-vertical asymptoteis y =0

To find where the parts of the graph lie, we generate a value table. The domain is divided by the vertical
asymptotes, and where the graph intersects the non-vertical asymptote, if any:

Interval x<0 x>0

x-coordinate test value x=-1 x=1
1 1 1

Value ofy=x—2 12 =1 Z= 1

We conclude that:
e The graph to the left of the vertical asymptote lies above the non-vertical asymptote.
e The graph to the right of the vertical asymptote lies above the non-vertical asymptote.
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1 .
R

Graphof y =

__ 3x+5
T ox+2

(3]

This rational function is an improper rational. So we perform a division

-2 3 5
—6
3 -1
Thus, 25— L
x+2 x+2
e The vertical asymptote is the solutionto x +2 =0 = x = -2

e The non-vertical asymptote is y = 3.

To find out whether the graph intersects the non-vertical asymptote, we equate the asymptote to the
function:

3x+5
X2
= 3+—=3
| *¥2
= —— = 0 which is impossible.
x+2

Hence, the graph of the function does not intersect the non-vertical asymptote.

Interval x<-2 x>-2
x-coordinate test value x=-3 X =
Valueof y = 3x+45 =4 =25
y= x+2 y= y=4
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We conclude that

e The graph to the left of the vertical asymptote lies above the non-vertical asymptote.
e The graph to the right of the vertical asymptote lies below the non-vertical asymptote.

3x+5 -1
Graphofy = 7 3 ey
5
4
- —
2
1
-6 -4 -2 2
2x2+7x—4
[4] T x24x-2
This is an improper rational, so we perform a division:
2
x? + x - 2 2x? + 7x - 4
2x? + 2x — 4
5x + 0
2x%+7x—4 5%
Hence, y = x24+x-2 2 +x2+x—2

e The vertical asymptotes are the solutionsto x?> + x —2 = 0
= x+2)x—1)=0
= x+2=0o0rx—-1=0
= x=—2orx=1

e The non-vertical asymptoteis y = 2

To find out whether the graph intersects the non-vertical asymptote, we equate the function with the
non-vertical asymptote, i.e.
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=

=
=

5x
x2+x-2

2=2+
5x
x2+x-2
5=0
x=0

The graph intersects the non-vertical asymptote at x = 0

We generate the value table as follows:

Interval x <=2 —2<x<0 0<x<l1 x>1
x-coordinate test =3 X =1 X =05 Xy =
value
Value of 7 3 9 1 18 1
2x*> +7x — 4 ——=—-1- —=4— 0 — =4
y= —;E—IT;t:E?— 4 4 2 2 4 2
We conclude that
e The graph to the left of the vertical asymptote x = —2 lies below the non-vertical asymptote.
e The graph slightly to the right of the vertical asymptote x = —2 lies above the non-vertical
asymptote.
e The graph slightly to the left of the vertical asymptote x = 1 lies below the non-vertical
asymptote.

e The graph to the right of the vertical asymptote x = 1 lies above the non-vertical asymptote.

2x2+7x—4 5x
Graph of y = g = 2+ P
10
5
-6 -4 P 2 4 6
-5
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[5] flx) = 222

x2+x+1

> fl)=0+222

x2+x+1
e The non-vertical asymptoteis y =0

e The vertical asymptote is given by the solutions to x? + x + 1 = 0. However, its discriminant

b? —4ac =1%? —4(1)(1) = —ve
Indicates that x? + x + 1 = 0 has no solution. Hence, the rational has no vertical asymptote.

To find out whether the graph intersects the non-vertical asymptote, we equate the asymptote with the
function:

zx—4 =0
X“+x+1
= 2x—4=0
= 2x =4
4
= x==-=2
2
Interval x <2 x> 2
x-coordinate test value X = X =
2x—4 2
Value of y = —~—— y=—4 Y =13

We conclude that

e The graph to the left of the x-intercept is below the non-vertical asymptote.

e The graph to the right of the x-intercept is above the non-vertical asymptote.

2x—4 2x—4
Graph of r(x) = =
P ( ) x2+x+1 x2+x+1

156



x343x%2  x343x%240x+0
[6] f(x) T x2-4  x2+0x-4

This is an improper rational so we perform a division,

X =+ 3
x? + 0x - 4 x3 + 3x? + Ox + 0
x3 + 0x? - 4x
3x? + 4x + 0
3x? + 0x — 12
4x + 12
Hence, r(x) = B3t x + 3+ 22
’ x2—4 x2—-4

e The non-vertical asymptoteis y = x + 3

e The vertical asymptotes are the solutionsto x2 —4 = 0
= x? =4
= x=2o0rx=-2

To find out whether the graph intersects the non-vertical asymptote, we equate the non-vertical
asymptote with the function:

x+3+2 2 x4 3
x2-4
4x+12
= — =10
x2—4
= 4x+12=0
= 4x = —12
12
= x=—=-3
4
Interval x < -3 —3<x< -2 —2<x<2 x> 2
x-coordinate test Y= —4 =25 X = x =
value
—-16 4
Value of - - __
y= = 3.125 54 4
g X3 T3 y=ge y=0 y=2=10%
x2 — 4 =—1§ )

We conclude that
e The graph to the left of the non-vertical asymptote intercept lies below the asymptote.
e The graph between the non-vertical asymptote intercept and the vertical asymptote x = —2 lies
above the non-vertical asymptote.
o The graph between the two vertical asymptotes lies below the non-vertical asymptote.
e The graph to the right of the vertical asymptote x = 2 lies above the non-vertical asymptote.
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x3+3x% 4x+12

The graph of y = PR x + 3+m.
20 L
10 L
//
\/
-6 = N 2 4
_10 L
x3-2x%2+16 _ x3-2x%2+0x+16
71 f) ==
We perform a division
2 1 -2 0 16
2 0 0
1 0 0 16
x3-2x2+16 2 16
Hence, =—=x“4+0x+0+—
x—2 x—2
— x2 4 10
= y=x°+ o

e The non-vertical asymptote is y = x?
o The vertical asymptote is the solutionto x =2 =0 = x =2

Now, we equate the non-vertical asymptote with the function to see if the graph intersects the non-
vertical asymptote,

= 1—62 = 0 which is impossible.

Hence, the graph does not intersect the non-vertical asymptote.
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We now generate a value table:

Interval x <2 x> 2
x-coordinate test value X = X =
x3-2x2+16 16 =

Valueofy—T y—_—z——8 y—25

We conclude that

o The graph to the left of the vertical asymptote lies below the non-vertical asymptote.
e The graph to the right of the vertical asymptote lies above the non-vertical asymptote.

x3-2x2+16 2, 16
—_— X

Graphof y = o +5
15) L
10
-4 -2
-5 r
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4.1 Exponential Functions
Definition of an Exponential Function:
y=a
e  Where the base must be positive, i.e. a > 0
e |tsdomainis —o0 < x < o or x € (—o0, )

e Anditsrangeis y >0 or y € (0,00)

Graphs of Exponential Functions, y = a*
Three possibilities:

i When a>1.

ii. When a =1

Note: In this situation, we have y = 1* = 1 which is basically a constant function.
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iii. When O<a<l

\

Observations:
i. The graph of y = a* intersects the y-axis at (0,1) .

ii. The exponential graph is always above the x-axis, i.e. no matter what value we assign to the
variable x,

a*>0
Thus, its range is y € (0, o)

iii. In the graph of y = a*, where a > 0 and a # 1, we have a horizontal asymptote y = 0, i.e.
the x-axis is the horizontal asymptote of the exponential function.

iv. The function y = a*, where a > 0 and a # 1, is a one-to-one function on its entire domain

x € (—oo,), i.e we can define its inverse function.
(We shall discuss the inverse of the exponential function in Section 4.3 - Logarithmic Functions.)

Another observation:

Let us consider the base a > 1. And let us also consider a function

y=a”
1
= y=;
= y=1—x , Weknowthat1* =1
ax
1x
> v=()
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X

The graph of y = a™*, where a > 1, is obtained by reflecting the graph of y = a* about the y-axis,

4 F

\

-2 -1 1 2

X
In summary, the graph of y = a* and the graph of y = G) are reflections of each other about the y-

axis.

X
Example: The graph of y = 3* and the graph of y = G) are reflections of each other about the y-axis.
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Compound Interest

Let us say we deposit an amount P in a savings account. This account earns interest at an annual interest
rate r compounded n times per year. After t years, the amount in the account grows to

Ay =P(1+ %)nt

Where A(t) = amount after t years

P = principal

r = interest rate per year

n = number of times interest is compounded per year
And  t = number of years

Annual Percentage Yield (Effective Interest Rate)
Suppose we deposit money into a savings account that returns an earning of $X. The Annual Percentage

Yield (AYL) is the interest rate that would return the same amount of earning, i.e. $X, if we had applied
this AYL to the principal amount compounded once a year.

Examples: A bacteria culture contains 1,500 bacteria initially and doubles every hour.
[a] Find a function that models the number of bacteria after t hours.
[b] Find the number of bacteria after 24 hours.

Solution: Formula A(t) =P(1+ )¢

Where A(t) = number of bacteria after t hours,
1+ i = 2, the number of bacteria doubles every t hours,
and P = 1500 bacteria.
[a] A(t) = 1500(2)*

b]  A(24) = 1500(2)%*

Examples on Compound Interest:

[1] If S500 is invested at an interest rate of 3.75% per year, compounded quarterly, find the value of
the investment after 2 years.

ANt
Solution: Formula Alt) =P (1 + Z)

Where P = $500,
r = 3.75% = 0.0375, We have to use the actual number, not percentage.
n=4 There are 4 times of compounds in a year.

and t = 2 years.
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@@
A(2) = 500 (1 + °'°375)

= 500(1 + 0.009375)8

= $500(1.009375)8

[2] Find the present value of $100,000 if interest is paid at a rate of 8% per year, compounded
monthly, for 5 years.

r nt
Solution: Formula A(t) =P (1 + ;)
Where A(5) = $100,000,
r =8% = 0.08, We have to use the actual number, not percentage.
n=12 There are 12 times of compounds in a year.

and t =5years.

We want to find the present value or the principal, P, that must be invested now to produce an amount
of $100,000 five years from now.

(12)(5)
100,000 = P (1 n %)

P(1+ 8 )60

1200

P (1 + ﬁ)w

_p (E)GO

150
100000
” @°
150
= $100000 (@)60 ~ $67,121.04
- 151 et
[3] Find the annual percentage yield for an investment that earns 8% per year, compounded monthly.
Solution: Let Terf = Annual Percentage Yield
r n
So we let 1+ 755 = (1 + ;) , since we want the yield after t = 1 year.

= reff=(1 +%)n—1
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Where r = 8% = 0.08,

n=12 Compounded monthly, and there are 12 months in a year.

> 1= (1 + %)12 -1

=(1+$)12—1

151\12
- (R) — 1~ 0.083 ~ 8.3%

You would in actual fact be receiving an interest rate of 8.3% under this agreement.

(4] A couple has a 6-year-old child who will be ready for college in 12 years. The couple estimates
that $85,000 will be needed to pay for the estimated four years of college. To the nearest dollar, how
much would have to be invested now at a nominal rate of 10%, compounded monthly, to meet this need?

Mt
Solution: Formula Alt) =P (1 + ;)

Where A(12) = $85,000,
r=10% = 0.1, We have to use the actual number, not percentage.
n=12 There are 12 compounds in a year.

and t =12 years.

We want to find the present value or the principal, P, that must be invested now to produce an amount
of $85,000 twelve years from now.

E)(12)(12)
12

85,000 = P (1 +

=P(1+%0)144

144
121
-r(z)
120

85000

144
= $85000 (@) ~ $25,729

121

165



4.2 The Natural Exponential Function

The Number e

n
Definition: e = lim (1 + l)
n—oo n
1
OR e =1lim(1+n)n
n-0

e = 2.7182818284590452353 ---

It is an irrational number, i.e. the decimal digits go on indefinitely with no obvious pattern. And it cannot
be written as an exact fraction.

The Natural Exponential Function

Definition: f(x) = e*, the base of this exponential function is the number e.

Continuously Compounded Interest
If an investment starts generating an income for us the moment we put in the investment, this is said to
be a continuously compounded interest. We can think of it as having the interest compounded an

infinitely huge number of times per year!

The continuously compounded interest formula is

A(E) = P ( lim (1 + %)nt)

n—oo

r
Let m=-

n
= n=

r
m

And as n - oo, we have % — 0 and m — 0. Continuing,

A(t) = P (Tgi_r;rgo (1+ %)nt)

(gt fE)

1.1t

=P (fim 1+ )

1
A(t) =Pe™ , sincee = lim (1 + m)m
m-
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Where A(t) = amount after t years
P = principal
r = interest rate per year
And t = number of years

Example: Stavros buys a brand new car today at the price of $15,000. It is estimated that the car
depreciates in value at the continuous rate of 8% per year. How much will the car be worth exactly 5
years from now?
Solution: Formula A(t) = Pe™
Where P = $15,000
r = —8% = —0.08, negative value indicates a depreciation or a decrease in value.
And t =5years.

A(8) = 15000 (~008))

= $15000e %4 ~ $10,054.80
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4.3 Logarithmic Functions

The logarithmic function and the exponential function are inverses of each other, i.e.

log, x = y><:><vay =x
base exponent
Examples:
23=8 & log,8 =3
372=: & logzi= -2
645 = 4 o loged4=1

1255 =25 &  logy,s25="2

e The base of the logarithmic function must be positive and cannot be 1 i.e.
0<a<lora>1
e The domain of the logarithmic function must be positive, i.e.
x>0

e The range of the logarithmic function is —co <y < o0

Properties of the Logarithmics

1. log,1=0 because a® =1
2. log,a=1 because a' = a
3. log,(mn) = log, m +log, n

4, 1oga% = log, m —log,n

5. log, m" =rlog, m

6. log,a* =x

7. al%8a¥ = x

168



8. If log,x =log,y, then x =y

Graphs of the Logarithmic Functions, y = log, x
Two possibilities:

1. When a > 1

2. When 0<a<1

Some observations:

1. We can also show that the graph of y = log, x and the graph of y =log: x are reflections of

a

each other about the x-axis.
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2. Since y = a* and y = log, x are inverses of each other, the graph of y = a* and the graph of
y = log, x are reflections of each other about the diagonal line y = x.
Common Logarithms

A logarithm with base 10 is called a common logarithm. In the American system, a logarithm with base
10 can be written with the base omitted, i.e.

log,ox = logx

Natural Logarithmics

A logarithm with base e = 2.718281828459 --- is called a natural logarithm. A logarithm with base e can
be written as follows:

log,x =Ilnx

Remember that Inx is the shortcut way of writing the longer log, x .

Applications

1. A total of $P is invested at an annual interest rate of 9% annually. Assuming that the interest is
compounded continuously, how long will it take for the amount of money to double?

Solution: If the interest is compounded continuously, then the model is
A =Pe™
> 2P = Pe™ , since we want the initial amount P to double or to become 2P
= 2=e¢t
= rt =log,2=1In2
> =22

T

Given that 7 = 9% = 0.09 per year,

In2
t = — years
0.09
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2. Radioactive Decay

Given a radioactive material of initial mass m, with a half-life t:. The amount remaining after t years is
2

given by

L
1\
m=mg E 2

Rewrite the above formula as t in terms of m.

t
Answer: m=mg G) 2
m _ (1\%
7 m ()
= log: —
= 1
1 gE Mo
= t = t1logi—
3 g% Mo
3. An employee is hired at a salary of $20,000 per year. If this employee is given a 10% salary

increase each year, how long will it take for the salary to exceed $48,000 per year?

Solution: Formula Alt) =P (1 + T)nt
' - n
Where t = 10 years
A(10) > $48,000, we want the salary to exceed $48,000
P = $20,000
r=10% = 0.1
And n =1, compounded only once per year.

A(10) > 48000

)
= 20000 (1 n 0—11) > 48000

= (1+0.1)¢ > 48000/20000

- (1.1)t > 2.4
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= In1.1t > 1n2.4

= tln1.1 >1n2.4

In2.4
In1.1

= t > 9.1855 years
= t = 10 years at the very least

The employee must work for at least ten years before getting a salary of at least $48,000 per year.
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44 Laws of Logarithms
Memorise the following laws:

e log,(AB) =log, A +log, B

. logag =log, A —log, B

e log,A° =clog, A
Important:

o log,(x+y) #log,x+log,y

o (log,A) #clog, A

Examples:

Evaluate the expressions:

[1] log, 160 —log, 5 = log, %

=log,32=5,

[2] log,29 +log;, 16 = 10g12((9)(16))

= 10g12 144 =2

[3] log, 833 = 331log, 8

=(33)(3) =99 )

Expand the expressions:

a2

(41 logiirz

= loga® — logh* —log+/c
1
=loga? — logh* — logc2

= 2loga —4logh —%logc

since 25 =32

, since 122 = 144

since 23 =38
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[5] log /x\/ﬁ = log (x\/yTE)E
= %log <x\/ﬁ>
= %(logx + log\/yTE)

= %(logx + log(y\/z)%>

= %(logx + %log(y\/z))

= %logx + ilog(y\/g)

= %logx + i(logy +logVz)
= Zlogx + (logy + 1ogz§)
= Zlogx + (logy +3logz)

1 1 1
= Elogx +Zlogy +glogz

Combine the expressions:

2_
(6] logs(x* — 1) — logs(x — 1) = logs 9;_11

= logs % =logs(x + 1)
(7] %log(x +2)3 + % (logx* —log(x? — x — 6)?)

= ;log(x +2)+ %logx4 — %log(x2 —x—6)?
4 2 2

=log(x +2) + Elogx — Elog(x —x—06)

=log(x +2) + 2logx — log((x —3)(x + 2))

=log(x + 2) + 2logx — (log(x — 3) + log(x + 2))
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= log(x + 2) + 2logx — log(x — 3) — log(x + 2)
= 2logx —log(x — 3)
=logx? —log(x — 3)

xZ

= log—

x—3

Change of Base Formula

The change of base formula allows us to evaluate a logarithm of base other than 10 or e, by changing the
base to either 10 or e and then using a calculator to evaluate its value.

The following examples are purely for your interest only, since you are NOT allowed to bring an electronic
calculator to your labs and tests.

Evaluate each logarithm correct to 6 decimal places.

In10
log., 10 = N2V L 0.926628
(@) 927 =12

orR  log,10=129010 _ 596628
910
b)  log,8.4="8% _ 3070389
In2
orR  log,8.4=129084 _ 3070389
log,, 2
Example: Simplify (log, 5)(logs 7).
Solution: (log, 5)(logs 7)
__ (logs5
- (logz 2) (lOgS 7)

= (10;5 2) lOgS 7
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__logs7

= Tog. 2 = log, 7

The above example is a verification of the following formula:

(logg b)(logy, ¢) = logg ¢
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4.5 Exponential and Logarithmic Equations

Guidelines for Solving Exponential Equations
1. Isolate the exponential expression on one side of the equation.
2. Take the logarithm of each side, then use the Laws of Logarithms to bring down the exponent.
3. Solve for the variable.

Guidelines for Solving Logarithmic Equations
1. Combine the logarithmic terms and then isolate the resulting logarithmic term on one side of the
equation.
2. Write the equation in exponential form.
3. Solve for the variable.

Examples on solving exponential and logarithmic equations:

Determine the x-value of each equation:

1. 42%=7 = 64
= 42%=7 = 43 . Knowing that 64 = 43 .
= 2x —7 =3 ; Applying the One-to-one property for exponentials.

= 2x=3+7=10

10

= x=—=25
2
2. log,(x +3) =5
We must havex +3 >0 = x> -3

Continuing, log,(x+3)=5
e x+3=2°; Knowingthat a’=c & log,c=5h.
= x4+ 3 =32 ; Knowingthat 25 =132.

= x=32—-3=29

3 eX’=3 = px-2

> x?>—3=x—2; Applying the One-to-one property for exponentials.

>  x2-3-x+42=0
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= x>—x—1=0

_ —bxVb?-4ac

= X ;
2a

We canseethata=1,b=—-1andc=-1.

x = —(=D+y(-1)2-4x1x(-1)

=
2x1
1+VIi+4  1+V5
= X = ===
2 2
1+/5 1-/5
= x = or x =——
2 2
4. e?* —4e* —5=0

= (e¥)? —4e*—-5=0
= (e*=5)(e*+1)=0

= e¥*—5=0 or e*+1=0

> e*=5 or e*=-1

But e* > 0, so e* = —1 cannot be accepted. Therefore, the only solution is from
e¥=5

= x =1In5

5. Inx —In(x+1) =2

We musthavex >0andx+1>0
= x>0 and x > —1
= x>0

Continuing, Inx —In(x+1) =2

X
= In— =2
x+1
X
= — =¢2
x+1
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= x —e?x = e?
= (1—e?)x = e?
= x=-"2

T 1-e?

€2

1—e?

But

< 0, which means x < 0. We cannot assign this value to x, since we require x > 0.

Therefore, Inx — In(x + 1) = 2 has no solution.

6. log(8x) —log(1 +vx) =2
We must have 8x > 0 and 1+ vx > 0. Also, from vx, we must have x > 0.
Combining the above two conditions, we conclude that we must have x > 0.

Continuing,  log(8x) —log(1 + vx) = 2

= logli—f& =2

= logyo li—xﬁ = 2 ; In North America, we write that loga = log¢ a .
8x _ 2 _

= hs 10 =100

= 8x = 100(1 + vx)

= 2x = 25(1++/x) = 254 25vx ; Divide both sides by 4.

= 25vx = 2x — 25

> (25vx)° = (2x — 25)2

= 625x = 4x% — 100x + 625

> 4x%2 — 100x + 625 — 625x = 0

> 4x% —725x+625=0; Here,a=4,b=—725andc = 625.

X = —b+Vb2—4ac

2a
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X = —(=725)++/(=725)2-4x4x625

=
2x4
_ 725+v525625-10000 _ 725+v515625 _ 725+V56x33 _ 725+53y/33 _ 725+125y33
- 8 - 8 - 8 - 8 - 8
725+125v33 725-125v33
= xX=—"——" or x=———

8 8

Compound Interest Recall the following formulas:

e Interest compounded n times per year:

nt

T
AWy =P(1+ E)
e Interest compounded continuously

A(t) = Pe™

Examples:

[1] A woman invests $6,500 in an account that pays 6% interest per year, compounded continuously.
How long will it take for the amount to be $8,000?

Solution: Formula A(t) = Pe™
Where we want A(t) = $8,000
P =$6,500

and r=6% = 0.06
We want to find t. So,

8000 = 6500¢°06¢

0.06t _ 8000 _ 16

= e =
6500 13
N 0.06t = In2
13
6
= —t=In16—-1n13
100
N t=20,16
6 13

50, 16
t ==In= years
313
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[2] Find the time required for an investment of $5,000 to grow to $8,000 at an interest rate of 7.5%
per year, compounded quarterly.

Solution: Formul A(t)—P(l +1)nt
olution: ormula = ~
Where we want A(t) > $8,000
P =$5,000

r=7.5% = 0.075
And n =4, compounded quarterly or four times per year.

We want to find t. So,

4t
5000 (1 + %75) > 8000

4t
0.075 8000
= (1 + —) >
4 5000

0.075\4t
N (1 + T) > 16
N (1 + 0.01875)* > 1.6
N 1.01875% > 1.6

= In1.01875% >1In1.6 ,  takingthe log of both sides.

= 4tIn1.01875 >1In1.6

= t> In1.6 ears
41n1.01875 y

[3] How long will it take for an investment of $1,000 to double in value if the interest rate is 8.5% per
year, compounded continuously?

Solution: Formula A(t) = Pe™
We want A(t) = $2,000 , theinvestment is doubled.
P =$1,000
And 7 =8.5% = 0.085

So, 2000 = 1000e°085¢

- £0:085t — 2000 _

1000
In2
= 0.085t =1In?2 - t =g years
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5.1 Trigonometric Functions of Real Numbers

The Unit Circle is the circle of radius 1 unit with its centre at 0(0, 0).

y
x,y)
N,
V4
LN
0
1 0 X

Let 6 be the arc length from 0(0,0) to point P(x,y) . We can now define the trigonometric ratios as
follow:

e sinf=y
e cosfO=x

e tanf = %, provided x # 0
e c(cscO = %, provided y # 0
e secl = %, provided x # 0

e cotl = i, provided y # 0
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Based on the above definitions, we shall now define the trigonometric ratios for the angles 30°, 45° and
60°,

Trigonometric ratios for 30°

’(4x P
30°
1 oIN30°
7S
7
/Q(x, y)

= 1 unit
X

\ P(x,y)
0

Let us define an equilateral triangle OPQ placed on a Cartesian plane such that
e OP =0Q = PQ = 1unit inlength,
e Angle that OP makes with the x-axis is 30°, and
e Angle that 0Q makes with the x-axis is also 30°.

We can now see from the above diagram that ZPOQ = 60°. It is obvious that
e Both points P and Q have the same x-coordinate and

e The y-coordinate of point P has the opposite sign of the y-coordinate of point Q although both
have the same absolute value.

Using the distance formula, we obtain

OP=/(x—0)2+({y—-02=1

= Jx2+y?=1

= x*+y*=1 (1)

And PQ = \[(x —x)2+ (y — (—y))2 =1

= JOZ+(y+y)2=1
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= J2y)»?2 =1

x2+y?=1

2
= x2+(l) =1

2

2,1 _

= x+4—1
= x2=1—lzi
4 4

= x = 3_13
4 2

And the above diagram simplifies to

y
V3 1
(23
4\’ 2 2
«
30° X
1 0]
o ) . . . . . V3 1
For an angle of 30° defined from the x-axis to the terminal line, the terminal point is at P (7,5).

Therefore, the trigonometric ratios are

. sin30°=y=%

° c0530°=x=\/7§
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1
5 1 V3
e tan30°===-%t=—=—
V3 3 3
2 3
1
o csc30°:l=T=2
Yoz
243

o_1_1_2 _ 243
e sec30 = ITET5"
2

Trigonometric ratios for 45°

N \P ()

N\

45°

When the terminal line defines an angle of 45° with the x-axis, its equation is y = x, i.e. the x-coordinate
and the y-coordinate of point P have the same value. So we have,

JEx—-02+(@-02=1
= JxZ+yz=1
= x2+y2=1 (1)

And we have y = x that we substitute into (1).

x> +x%2=1
= 2x% =1
= X2 =1

185



U
=
I
N R
I
Sl
;N

And also y =

~[

And the above diagram simplifies to

y
p V2 2
N 22
Z
<
45° X
1 0
For an angle of 45° defined from the x-axis to the terminal line, the terminal point is at P (g,g)

Therefore, the trigonometric ratios are
e sin45°=y= g
e (c0s45°=x=

A
—Y_2 _
o tan45°—;—§—1
2

o_1_1_2_
e csc45 =,=%"= 2—\/5
2

1 2
o secd5=-=—===42
=
72 V2
vz
e cot45° = —%=1
2
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Trigonometric ratios for 60°

y
P(x,y)
Py PQ = 1 unit
{
60° Q(1,0)
X

Let us define an equilateral triangle OPQ placed on a Cartesian plane such that

e Point Q is located at coordinates (1,0),

e (OP =0Q = PQ = 1unit inlength, and

e £P0OQ = 20PQ = £0QP = 60°,

Using the distance formula, we obtain

OP=/(x—0)2+(y—-02=1

=

=

=1

x2+y?=1 (1)

And  PQ=,(x—1)2+(y—-0)2=1

=

=

(x-1)+(@-02=1
x2—-2x+1+y%2=1

x2+y2-2x=0

1-2x=0, sincex?+ y? =1 from equation (1)

2x =1

1
X==
2
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Substituting this result into (1),

x2+y?=1

SNCORSE

= S+y?=1
1 3
3_\3
Z Y \iT2

And the above diagram simplifies to

For an angle of 60° defined from the x-axis to the terminal line, the terminal point is at P G,g)

Therefore, the trigonometric ratios are

3

e sin60°=y= >

1
° cos60°=x=5

V3
e tan60°=Z=-2=4/3
2
1 2 243
e csc60°=-=—=—=—
=
g
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T
2

1 1 V3

o _2 _ 2 — - Y2

e cot60° = RN

Trigonometric Functions of Quadrant Angles

Now, we shall use the same Unit Circle to obtain the trigonometric functions of angles 0°, 90°, 180° and
270°.

0° : The terminal point P lies on (1,0)

P(1,0)
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90° : The terminal point P lies on (0,1)

P(0,1)

90°

e sin90°=y=1
e c0s90°=x=0

1. . ...
e tan90° = % =g is undefined because we have a division by zero.

180° : The terminal point P lies on (—1,0)

180°

P(=1,0) b

e sinl80°=y=0

e ccosl180°=x=-1

e tan180°=2=2-0
X 1

190



270° : The terminal point P lies on (0, —1)

P(0,—1)

e sin270°=y=-1
e (0s270°=x=0

e tan270° = % = %1 is undefined because we have a division by zero.

Reference Angle

Recall that we define an angle 8 from the positive side of the x-axis up to the terminal line. Its reference
angle 0’ is the acute angle from any part of the x-axis and in any direction to this terminal line.

Diagrams:
1. If 90° < 6 < 180°
y
Terminal Line
Angle, 0
Reference angle, 0’
X
0] Initial Line
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2. If 180° <8 < 270°

Angle, 6

N

Reference angle, 6’ Initial Line

Terminal Line

3. If 270° < 08 < 360°

Angle, ef\ Initial Line
X
(0]
K Reference angle, 8’

Terminal Line
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4, And of course if 0° < 8 < 90°

y
Terminal Line
Reference angle, 8’
Angle/0
0] Initial Line

Quadrants

The Cartesian plane is divided into four quadrants by the x and y axes.

y

Quadrant Il

Quadrant |

Quadrant Il

193
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Evaluating Trigonometric Functions of Any Angle

To find the trigonometric function of any angle 6:

Determine the function value for the corresponding reference angle 6'.

Assign the appropriate sign to the trigonometric function depending on the quadrant the terminal
line falls in. To obtain the appropriate sign, we use the “CAST” Rule:

1.

2.

Examples:

1. 150°

y
Quadrant Il Quadrant |
Sine All
Sin is +ve Sin is +ve
Cos is—ve Cos is +ve
Tan is —ve Tan is +ve
X
0 .
Tangent Cosine
Tan is +ve Cos is +ve
Sin is —ve Sin is —ve
Cos is—ve Tan is —ve
Quadrant Ill Quadrant IV
Find the trigonometric functions of the following angles:
y
Terminal Line
Angle
6 = 150°
Reference angle
6’ = 30° \
oy . . X
0 Initial Line
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Since the terminal line falls in the Second Quadrant, only the Sine function is positive while the Cosine and
the Tangent functions are negative. So we have

sin150° = sin 30° = %

cos 150° = —cos 30° = _‘/;
And  tan150° = —tan30° = _g
2. 225°
y
Angle
Reference angle Initial Line

0' =45°

Terminal Line

Since the terminal line falls in the Third Quadrant, only the Tangent function is positive while the Sine and
the Cosine functions are negative. So we have

sin 225° = —sin45° = —g

c0s 225° = —cos45° = —\/;

And tan225° =tan45°=1
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3. 300°

Angle

6 =300°
Initial Line
5 X
\ Reference angle

0’ = 60°

Terminal Line

Since the terminal line falls in the Fourth Quadrant, only the Cosine function is positive while the Sine and
the Tangent functions are negative. So we have

V3
2

sin 300° = —sin 60° = —

cos 300° = cos 60° = %

And  tan300° = —tan 60° = —/3

Summary

Up to this stage we have already collected the exact trigonometric functions of 0°, 30°, 45°, 60°, 90°,
180° and 270° as shown in the table below:

0 0° 30° 45° 60° 90° 180° 270°
(degrees)

0 0rad | ~rad | Zrad | Zrad | Zrad a |3
(radians) ra g ra L 3 Ta 5 ra Tra — rad
sin @ 0 l E E 1 0 -1

2 2 2
cos O 1 ﬁ E l 0 -1 0

2 2 2

V3 . .
tan @ 0 ~ 1 V3 Undefined 0 Undefined
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Finally, we end this section by summarising as follow:

Reciprocal Trigonometric Functions

1

e cscO =
sin @
1

e secH =
cos@
1

e cotl =
tan @

Even-Odd Properties
e sin(—x) = —sinx ; sinx isan odd function.
e cos(—x) =cosx ; cosxisan even function.
e tan(—x) = —tanx ; tanx isan odd function.
e csc(—x) = —cscx ; cscxisan odd function.
e sec(—x) =secx ; secxisan even function.

e cot(—x) = —cotx ; cotxisan odd function.

Pythagorean Identities
e sin?x+cos?x=1

e 14 tan?x =sec’x

e 14 cot?x =csc’x
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5.2 Graphs of Trigonometric Functions

You should memorise the following trigonometric graphs:

Graph of y = sin x:

10
05
-10 —Pn-3m — T T 38
2 2 2 2
-0,
£10 ¢
Graph of y = cos x:
10
| \ /\
-10 —2n-3m—m [T n 3 27
2 2 2
-05
-10 t
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Graph of y = tan x:

Graph of y = cscx:

N )
SN
AN

199

NI




Graph of y = secx:

10 —2M-BT —TC

NS

Graph of y = cotx:

| &

- [
N
N

I
N
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5.3 Inverse Trigonometric Functions and Their Graphs

Inverse Sine Function

The original sine function, y = sin x, has a domain that is x € (—oo0, ) and as you can see from the graph
of y = sin x, this function is not one-to-one. However, if we restrict the domain to an interval —g <x<
%, the function does become one-to-one.

/—41: 3n -2n n_ 0 T 2n 3n 4n

-

Graph of y = sinx

The reason why we restrict the domain to an interval where the function y = sin x becomes one-to-one
is so that we can define its inverse function. Hence, if

y = sinx defined on the interval —% <x< %with range—1<y<1

Graph of y = sin x defined on —g <x<

N[

10

05

-15 -10 -05 05 10 15
-05

-10
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Its inverse function is defined as
x=sin"ly or x = arcsiny

However, as you may recall, we usually use the symbol x for the independent variable and the symbol y
for the dependent variable. Therefore, we have the definition of the inverse sine function as:

The inverse sine function is defined by
y = sin"!x = arcsinx S siny = x

Where the domainis —1<x<1 or x € [-1,1]

And the range is ——-<y<

NI
NP

wve[-33

Similarly, we can define the inverse of the other trigonometric functions with their domains and ranges:

Definitions of the Inverse Trigonometric Functions

. . . Inverse Trigonometric .
Trigonometric Function . & Domain Range
Function
. . _1 T T
siny = x y=sin""x -1<x<1 —ESySE
Cosy =X y =cos tx -1<x<1 0<y<m
T T
tany = x y=tan 'x —00 < x < 0 —5<y<3
Graph of y = sin™1x:
15
10
05
-10 -05 05 10

-05
-10
-15
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Graphof = cos 1x:

-10 -05

Graphof = tan 1 x:
10
10
05 r
-10 —‘5 5 10

-0,

-10
15
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Examples: Evaluate the following:

1. sin™?! (— %)

Solution: let y=sint (— %)
= siny = 1
y=73
Now, we know that for the y = sin™! x function, the range is —% <y< % Therefore, whensiny = —%,
the only result we can obtainisy = —%. Thus,
sin™?! (— l) =-=
2 6
_1V2
2. cos 172
2
. _1V2
Solution: let vy =cos 1‘/7—
S cosy = 2

2

Now, we know that for the y = cos~ ! x function, the range is 0 < y < . Therefore, when cosy = \/77,

the only result we can obtainis y = %. Thus,

-1 \/E s
cos™ —=-—
2 4
3. tan~1(-1)
Solution: let y=tan"1(-1)
= tany = —1
Now, we know that for the y = tan™! x function, the range is —% <y< g Therefore, whentany = —1,
the only result we can obtainisy = —%. Thus,
—-1/_ — _E
tan"t(—1) ”
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4. tan (cos‘1 g)

1

wIlN

Solution: Let U = cos”
2
& cosu =<

i Since cosu = 3 0, we know that u must be an angle terminating in either the first quadrant or
the fourth quadrant based on the “CAST” rule.

ii. The range for y = cos 1 x is
0<cos'x<m
Which is in either the first quadrant or the second quadrant,

Conclusion: By taking the overlapping of both results above, we conclude that u must be an angle in
the first quadrant.

. . . . . 2
Drawing a right triangle with angle u, and knowing that cosu = > we have

_| u

2

Let p be the length of the opposite side. Using the Pythagorean Theorem, we can calculate that
p?+22 =32

= p2+4=9

Therefore,
12 5
tan (cos 15) =tanu = \/7—

Taking a positive value since the angle u terminates in the first quadrant.
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s eos(sn ()

Solution: Let u = sin~! (_ %)
. 3
S sinu = —=
5
i. Since sinu = —% < 0, we know that u must be an angle terminating in either the third quadrant

or the fourth quadrant based on the “CAST” rule.

ii. The range for y = sin" 1 x is

<sin"lx <

TS
N

Which is in either the first quadrant or the fourth quadrant,

Conclusion: By taking the overlapping of both results above, we conclude that u must be an angle in
the fourth quadrant.

Drawing a right triangle with angle u, and knowing that sinu = —%, we have by taking only positive
lengths for the sides

_| u

a=4

Let a be the length of the adjacent side. Using the Pythagorean Theorem, we can calculate that

32 + a2 = 52

> a=+V16 =4

Therefore,
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Taking a positive value since the angle u terminates in the fourth quadrant where the cosine function
takes a positive value.

6. sin(cos™1(3x)), where 0 < x < §
Solution: Let u = cos~1(3x)

= cosu = 3x
We are given that 0<x< %

= 0<3x<1

Meaning that cos u = 3x is a non-negative value.

i Hence, we know that u is an angle terminating in either the first or the fourth quadrant from the
“CAST” rule.

ii. Also, since the range of the arccosine function is 0 < cos™(3x) < m, the range falls either in the
first quadrant or the second quadrant.

Conclusion:  Taking the overlapping of quadrants from the above two results, we conclude that u must
terminate in the first quadrant.

Drawing a right triangle with angle u, and knowing that cosu = 3x = 3Tx, we have

p=+1-9x2
] u

3x

Let p be the length of the opposite side. Using the Pythagorean Theorem, we can calculate that
p*+ (3x)* = 17

= p2+9x?=1

= p? =1—9x?
= p =V1—9x2
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Therefore,
sin(cos™1(3x)) = V1 —9x2 , with0 <x < %

Taking a positive value since the angle u terminates in the first quadrant.
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6.1 Angle Measure
Radian and Degree Measure

Some protocol when defining angles on a Cartesian coordinate system:

1. When we measure an angle, we always start from the positive side of the x-axis.

2. An angle that is measured anti-clockwise is given a positive value.

3. An angle that is measure clockwise is given a negative value.

4, The line that we draw after we have stopped measuring our angle is called the terminal line (side).
y

Terminal Line

Anti-clockwise direction:
Angle is positive

0] Initial Line

Initial Line

Clockwise direction:
Angle is negative

Terminal Line
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Radian

Let us consider a circle with radius, r, and centre, C.

Let us also consider an arc on the circle that defines an arc length s. This arc length defines an angle 0
that is measured in radians as

Conversions between Radians and Degrees

The following rules will help:

1. Orad = 0°
And 2. mrad = 180°
Examples:

Convert the following angles from radians to degrees:

1. Erad=lxnrad
2 2
1 [o] o
=X 180° =90
2. 2rad=%><nrad

- 2xtaor = (2
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Convert the following angles from degrees to radians:

1. 30° = 22 x 180°
180
=3 xnrad =inrad
180° 6
2. 45°=2x180°
180
= 45: X mrad = ~m rad
180 4
3. 60° = 2% x 180°
180
= ﬂoo>< rrad = rad
180 3
4, A circle has a radius of 4 cm. Find the length of the arc, s, defined by a central angle of 240°.
s
240°
/
4cm
4cm
Solution: From the definition of an angle in radians:
S
=1
> s =10, where 6 is the central angle in radians.

Therefore, we must convert the given angle from degrees to radians:

240°

240° =
180°

X 180°

240° 4
=—Xmnrad =-nwrad
180° 3
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Now, given that the radius is 4 cm, we can calculate the arc length

Area of a Sector of a Circle

Let us consider a circle with radius r as shown in the diagram below. Let a sector of the circle be defined
by the central angle 6.

We know that the area of a complete circle is r? and that the angle of a full circle is 360°. Therefore,
the area of the sector of a circle defined by the central angle 8 is

A= X Tr?
360°
360°
And  360° = X 180°
180°
360°
= Xmrad = 2n rad
180°
6 6
Therefore, A==xnr?==r?
2T 2
1 . , .
= A= ErZB , Where 8 is the central angle in radians.
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Example: A car’s rear windshield wiper rotates 125°. The total length of the wiper mechanism is
25 jn and wipes the windshield over a distance of 14 in. Find the area covered by the wiper.

JITy

125°

14 in
25in

Solution:
Notice there are two sectors of circles involved. The bigger circle has radius
R =25in
and the smaller circle has radius
r=25-14=11in

Angle the wiper sweeps in radians:

125°

6 =125° = X 180°
180°
125° 25
= X nmrad =—mnrad
180° 36
Area of big sector:
1 25 625 _ 25 .
Apig =5 X252 X = = —=X—min®
2 36 2 736
Area of small sector:
1 25 121 _ 25 .
A =-x112x =g = ==X =1 in?
small = 3 36 2 7 36
Area that the wiper sweeps:
625 _ 25 121 _ 25
Asweep = Abig — Asmau = S X gﬂ' - X gﬂ
_ (625 121) 25
“\2 2 36
_ 504 _ 25
2 7 36
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= 252 X%nz 7 x 251 = 1757 in?

Linear and Angular Speed
Let us consider a particle moving at a constant speed along a circular arc of radius r.

If s is the length of the arc traveled in time t, then the Linear Speed of the particle is

__ Changein Arc Length,s

Time taken,t

If 8 is the central angle within that circle measured in radians, then the rate of change of the angle is called
the angular speed, denoted by w, i.e.

Change in angle,0
Angular speed, w = =T A
Time taken,t

D

Example:

The radius of the driving wheel of a bicycle is 14 in. A cyclist is pedaling and the driving wheel turns at the
rate of 1 revolution every 2 seconds.

1. What is the angular speed of the wheel?
Answer: One complete revolution is 360° = 2r rad
i.e. The wheel is turning with an angular speed of w = 2;” = n rad per second
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2. What is the speed of the bicycle?
Answer: The speed of the bicycle is equal to the linear speed of a point on the wheel circle
i.e. The circumference of the wheel is C = 2nr

= C=2nx14 =28n

The wheel turns at the rate of 1 revolution every 2 seconds, therefore the speed of the bicycle is

287 .
v=—= 147 in per second
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6.2 Trigonometry of Right Triangles
Trigonometric Ratios
This is the second method used to define trigonometric ratios.

Let us consider a right triangle with one of the vertices defining an angle 6 that we are looking to find the
trigonometric ratios of.

Side Opposite Hypotenuse

0

] 6
Side Adjacent
6

The trigonometric functions of the angle 8 are defined as follow:

. Opposite
Hypotenuse
Adjacent
e cosf = _~djacent
Hypotenuse
Opposite
e tan@ = PP
Adjacent
Hypotenuse
o c(sch = XU
Opposite
Hypotenuse
o secf = XBoenEE
Adjacent
Adjacent
e cotl = ]—
Opposite
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Evaluating the trigonometric functions of 30° and 60°

We will use an equilateral triangle with sides of length 2 units that is divided into two equal right triangles
by a perpendicular bisector.

Let h be the height of the perpendicular bisector. Using the Pythagorean Theorem, we can calculate h:
h? +1% = 22

= h2+1=4

By observing any one of the right triangles, we can define the following ratios:

30° :

e sin30°=-

° c0530°=\/7§
o1 _¥3

e tan30 =573

e csc30°=2
o_2 _2¥3

e sec30 =5~

e cot30°=+/3
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60° :

e sin60° =

~ |G

1
e (cos60° = >

e tan60°=+3

° csc60°=i:ig
3 3
e sec60°=2
o_ 1 _ 38
e cot60 =5=3

Evaluating the trigonometric functions of 45°
We will use a right isosceles triangle with the two equal length sides having length 1 unit.
Let h be the length of the hypotenuse. Using the Pythagorean Theorem, we can find h.
124+ 12 = p?
= h2=1+1=2

= h=42

45°

45°
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We can now define the trigonometric functions of 45° :

. sin45°:i=£

)

o 1 _ V2

e cos45 =5=7
e tan45°=1

e c(sc45°=+/2

e sec45° =42
e cot45°=1
Summary

How do we convert an angle from degrees to radians and vice versa? Simple, just remember that

zrad =180°
T
180°
1 1
Examples
1] 36" = 13?60 x 180° = %n rad = én rad
2] —72—” rad = —§><nrad = —%x 180° = —630°
900°

[3] 5rad=57rrad=5><180°=—
T T T
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Up to this stage we have already collected the exact trigonometric functions of 0°, 30°, 45°, 60°, 90°,

180° and 270° as shown in the table below:

0 0° 30° 45° 60° 90° 180° 270°
(degrees)
0 orad | Zrad | Zrad | Zrad | Zrad i | "
(radians) ra g ra Z ra § ra E ra Tra 7 rad
sin 6 0 1 i = E ﬁ 1 0 -1
2 V2 2 2
cos 6O 1 \/_§ i = E 1 0 -1 0
2 V22 2
tan 6 0 1 = ? 1 V3 Undefined 0 Undefined
3

Applications of Trigonometry of Right Triangles

1. Let 8 be an acute angle such that sin# = 0.6. Find the values of
(a) cosd
Solution: From the identity sin? @ + cos?6 =1

= 0.6% 4+ cos?0 =1
= 0.36 4+ cos?0 =1
= cos?0 =1-0.36 =0.64

= cosf =+0.64 = 0.8

(b) tan @
Solution: From the identity tanf = S(i:;z
= tanf = 22 =2
08 4
2. Let 8 be an acute angle such that tan 8 = 3. Find the values of
(a) cotd
Solution: From the identity coth = —
tan 6
= cotf ==
3
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(b) secd
Solution: From the identity 1+ tan? 6 = sec?6
= sec’0=14+32=14+9=10

= secd =10

Examples:
[1] The angle of elevation to the top of the Empire State Building in New York is found to be 11° from
the ground at a distance of 1 mile from the base of the building. Using this information, find the height of

the Empire State Building.

Solution: Let h be the height of the building.

11°

1 mile
h o
We can see that 1= tan11

= h =tan11° = 0.194380 mile

221



[2] A woman standing on a hill sees a flagpole that she knows is 60 ft tall. The angle of depression to
the bottom of the pole is 14°, and the angle of elevation to the top of the pole is 18°. Find her distance x

from the pole.

Solution:
hy
18° X
40
\‘\hz
We are told that hy + h, =60 ft ... equation (1)
And we can see that % =tan18° = h; = xtan 18° ... equation (2)
% =tanl4°® = h, = xtan 14° ... equation (3)
Substituting (2) and (3) into (1),
xtan 18° 4+ x tan 14° = 60
= x(tan 18° + tan 14°) = 60
S —
tan 18°+tan 14
60
= ~ ~ 104.484528 ft

X =
0.324920+0.249328
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6.3 Trigonometric Functions of Angles, The Law of Sines and The Law of Cosines
Definitions:

e Angle 6 is called an acute angle if 0° < 8 < 90°

o Angle 0 is called an obtuse angle if 90° < 8 < 180°

e Angle 6 is called a reflex angle if 180° < 8 < 360°

Law of Sines

If AABC is a triangle with sides a, b and ¢, then

We have the Law of Sines

a b c

sin A - sinB - sinC
OR
sin4 sinB sinC

a b ¢
And the area of AABC can be calculated from

1 1
Area = EbcsinA = EabsinC = EacsinB
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Example: Solve the unknowns and find the area of the triangle:

Solution: LA+ 2B+ 2C =180°
= LA+ 45" +105° =180°
= 2A =180"—45 —105 =30°

a b _ ¢
sind ~ sinB  sinC

Thus,

a 20 c
= - T = = T = = s
sin 30 sin45 sin105

Tofind sin105° = sin(60" + 45°)
=sin60° cos 45 + cos 60° sin 45"

-(OD+QD-52

2 2 2/ \ 2 4
a 20 c
So we have T= 5= T0h
2 2 P
a 20
Tz
2 7
40
= 2a—5
20 V2\ _
- a_5_20(7)_10\/§
And

V64V
> c=10222=10(V3+1)

224



The area of the triangle is

Area = %bc sin 4
= 2(20) (10(v3 + 1)) sin 30°

=2(20) (10(v3 + 1)) (3) = 50(V3 + 1) unit?

OR
Area = %ac sinB
=2(10v2) (10(V3 + 1)) sin 45’
=3 (10v2) (10043 + ) () = 50(43 + 1) uni?
OR

Area = %ab sinC
=~ (10v2)(20) sin 105°

=1 (10v2)(20) (*22)

4

=3 (10V2)20) (FEF) = 5043 + 1) i
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Law of Cosines

If AABC is a triangle with sides a, b and c, then

C

A c B
We have the Law of Cosines:
e a?=b%+c?—2bccosA
e b?=a%+c?—2accosB

o c2=qa%?+b%—-2abcosC

o

Examples: Find two triangles for whicha =2 m, b = (\/5 - \/E) mand B =15

. sin A sin B
Solutions: =
a b

sinA _ sin 15°

= 2 V62

To find sin 15, we could use
sin15" = sin(45" — 30")

= sin45’ cos 30" — cos 45’ sin 30°

-(HEH-G6) -7

inA V6—v2
sin
So we have =—2
2 V62
. 1
= sind = >
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= A=30" or A= 150"

There are two possible sizes for the angle £A. And angle £C could either be
£C=180"—15 —150" = 15

OR
<C =180"—-15"—-30" =135

Thus, there are also two possible lengths for the side c. From the Law of Cosines, we have

c?=a?+b?—2abcosC
> =224+ (V6 -v2)" - 2(2)(V6 - VZ) cos 15°
To find cos 15°, we could use
cos 15 = cos(45° — 307)
= c0s 45" cos 30" + sin 45" sin 30°
-G +EE) =5

Thus, 2 =22+ (V6 —v2)" —2(2)(V6 — v2) L2

4

=4+ (V6-v2)' — (V6 —VZ)(V6 +V2)
=4+ (V6-2) - (6-2)
—4+(V6-v2)' —4=(V6—2)
¢ = (V6 —V2) units
OR

c?=a?+b%*—-2abcosC
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> =224 (V6-v2) —2(2)(V6 — VZ) cos 135°
=224 (V2(V3- 1)) - 22v2(3 - 1)(-2)
—4+2(V3-1)" +4(y3-1)
=4+2(3-1)(V3-1+2)
=4+2(v3-1)(vV3+1)
=4+2B3-1)=4+2(2)=4+4=8

¢ = 2v2 units

Or We could use the Law of Sines to find ¢

a Cc

sin A sinC

If 2 = 15°, then £A = 150° and we have

> c=4xY2 = (V6 - V2) units

OR If 2 = 135, then £A = 30" and we have

c 2

sin135°  sin30°

=4

NTENEN

N|3||n

= c:4x§:2\/7units
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Heron’s Area Formula

Given a triangle with sides a, b and ¢,
C

A c B

the area of the triangle can be calculated from Heron’s formula

Area = \/s(s —a)(s—b)(s—c)

Where s=%(a+b+c)

Example: Find the area of the triangle with sidesa = 11, b = 15and ¢ = 20

Solution: Using Heron’s formula,

Area = \/5(5 —a)(s—b)(s—c)

Where 5=%(a+b+c)

=%(11+15+20)=%x46=23

Thus, Area = \/s(s —a)(s=b)(s—c)

=/23(23 — 11)(23 — 15)(23 — 20)

=+/23%x12%x8x%x3

=/23%x(4%x3)x(4x2)x3

=142 x32x 23 %2

= (4 X 3)V23 X 2 = 12V/46 unit?
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7.1 Trigonometric Identities

Reciprocal Identities:

1

o CSCX = —
sinx
1
o secx =
cosx
1
o cotx =
tanx

Quotient Identities:

__cosx

tanx sinx

Pythagorean Identities:
e sin?x+cos’x=1
e 1+tan®x =sec’x

e 14 cot?x =csc’x

Co-function Identities:
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Even/Odd Identities:
e sin(—x) = —sinx , i.e.sinx isan odd function.
e cos(—x) =cosx , i.e.cosx isan even function.
e tan(—x) = —tanx , i.e.tanx isan odd function.

In the following topics, we shall use the above identities to verify more complicated identities and to solve
trigonometric equations.

Examples: Simplify the following expressions:
1. tan? x — tan? x sin? x = tan? x (1 — sin? x)
sin? x 2 . o
= ——-'C0s“x =sin“x
Cos“ X

2. tan*x + 2tan?x + 1 = (tan® x + 1)?

= (sec®x)? = sec*x

3. (sinx + cos x)? = sin? x + 2 sinx cosx + cos? x

= sin® x 4+ cos? x + 2 sinx cos x

1+ sin(2x) , We will be discussing double angle formulae in a later topic.

Note: From the identity sin®x + cos?x = 1, we can obtain the following two identities
e 1—cos?x =sin’x

e 1—sin?x =cos?x

1 1 _ 1—-cosx 14+cosx
1+cosx = 1-cosx (1+cosx)(1—cosx)  (1+cosx)(1—cosx)

__ (1-cosx)+(1+cosx)
~ (1+cosx)(1—cosx)

_ 2
T 1-cos2x

2
=———=2csc’x
sin“ Xx
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sinfy _ sin’y 1+cosy

Tocosy — 1-cosy 1tcosy ’ Multiplying and dividing by the conjugate of the denominator.

sin? y(1+cosy)
1—cos?y

sin? y(1+cos
=—y,(2 Y)=1+cosy
sin2y

OR

siny _ 1-cos?y

1-cosy - 1-cosy

_ (1—cosy)(1+cosy) 14+ cos y

1—-cosy

Cosx

6. In|cos x| — In|sinx| = In = In|cot x|

sinx

Use the trigonometric substitution to write the algebraic expression as a trigonometric function of 9,
where 0 < 0 < g

7. V9 —x2, x=3cosH
=.9— (3cosH)?
=49 —9cos28

=./9(1 — cos?26)
=149sin%26 = 3sinf

Examples: Verify the identity:
8. cos?f —sin? B =1— 2sin?p
We shall start with cos? f — sin? 8 as it is the more complicated side.

cos?f —sin? B =1—sin?pB —sin?f =1 —2sin?
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1 1
= —2cscxcotx
cosx+1 cosx—1

As before, we always begin from the more complicated side

1 1 __ (cosx—-1)+(cosx+1)
cosx+1 = cosx—1 (cosx+1)(cosx—1)

2cosx
cosZ2x—1

2cosx
—(1—cos? x)

2cosx
—sinZx

1 COosXx
=—-2-———=-2cscxcotx
Sinx Sinx

10. (1 + cot?x) cos? x = cot? x
cos?x
= (1+cot2x)coszx=(1+ — )coszx
Sin“ x
sin? x+cos? x 2
=—————-cos’x
sin2 x
2 cos? x 2
= — "COS™ X = — = cot“x
sinZ x sinZ x
11. cscx —sinx = cosx cotx
CosXx
= COSx cotx = cosx—
sinx
__cos?x
~ sinx
__ 1-sin®x
T sinx
1 sin? x

sinx sinx

— —sinx = cscx — sinx
sinx
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12.

13.

14.

1+cosx sinx

sinx 1—-cosx

1+cosx 1+cosx 1-cosx

sinx sinx 1—cosx

_ 1-cos®x
sinx(1—cosx)

sin? x __ sinx

- sinx(1—cos x) T 1-cosx

cot?t  1-sin?t

csct sint
2 COS2 t
cot“t — sin2 t
csct 1
sint

cos?t _ sint
- X
sin?t 1

cos’t _ 1-sin?t

sint sint

cos3 x sin? x = (sin? x — sin* x) cos x
(sin? x — sin* x) cos x = sin? x (1 — sin? x) cos x

sin? x cos? x cos x

cos? x sin? x
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7.2 Addition and Subtraction Formulas
Memorise the following formulas:
e sin(u +v) =sinucosv + cosusinv
o cos(utv)=cosucosv +sinusinv
tanuttanv

o tan(utv)=_————r

Examples:

1. sin75" = sin(30° + 45")

= sin30° cos 45  + cos 30° sin 45"

(VL B
2 2 2

N[

_\/_i+\/_€_x/7+\/6
T4 4 4

2. cos 105" = cos(45° + 607)

= cos 45 cos 60° — sin 45 sin 60°

2 1 2 3

Y2, 1 2 V3
2 T2 2 2
V2 _ V6 _ V2-v6

T4 4 4

More identities:

e cos(sin"tx) = V1 —x2

Proof: Welet 6 =sin1x,

= sinf = x

= sin? 8 = x?

= 1—cos? 6 = x?
= cos?0 =1—x?

= cosf = +V1 — x2
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= cos(sin"'x) = +V1 —x2 , since® =sin"1x

. i - s .-
Since —5 =sin Ix < 2, sowe have 0 < cos(sin~1x) < 1, and hence

cos(sin"lx) = +4/1 — x2

e sin(cos™1x) =V1—x2

Proof: Welet ¢ =cos™1x
= cosp =x
= cos? ¢ = x?
= 1 —sin? ¢ = x?
= sin?¢g =1—x2

> sing = +V1 — x2
= sin(cos™ x) = +V1 —x2 , sincep = cos™1x
Since 0 < cos™'x < m, so we have 0 < sin(cos™ x) < 1, and hence

sin(cos 1 x) = +4/1 — x2

Evaluating Expressions Involving Inverse Trigonometric Functions
Example:

3. sin(sin™! x + cos™! x) = sin(sin™! x) cos(cos ™! x) + cos(sin™! x) sin(cos ™! x)

= () (x) + (V1—x2)(V1—x?)

=x?+1-x%2=1
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More examples:

. T . T 1
4, sm(x+—)—sm(x——):—
6 6 2
. T . T . T . T 1
= (smx cos—+ cosx sm—) — (smx COS— — COS X sm—) ==
6 6 6 6 2
. T . T . T . T 1
= sinx cos—+ cosx sin— — sinx cos— + cosx sin— = =
6 6 6 6 2
.om 1
= 2cosxsin— = -
6 2

= 2(cosx) G) =2

2
1
= COSX=E

bis 5m
x:§+2nn orx=?+2nn

= x = G + Zn)n or x = (g + Zn)n , Where nis an integer.

The following example is used in calculus to obtain the derivative of cos x :

cos(x+h)—cosx __ cosxcosh—sinxsinh—cosx
h h

cosx cosh—cosx—sinxsinh
h

cosx(cosh—1)—sinxsinh
h

cosx(cosh—1) sinxsinh
h h

cosh—-1 . sinh
COoSXx T —Sinx

Sums of Sines and Cosines
If A and B are real numbers, then

Asinx + B cosx = ksin(x + @)

Where k = VA2 + B2

A B
And =cos ' —— =sin" ——
@ VA2 +B? VA?+B?
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Examples:

Rewrite the following expressions in terms of only sine.

[1] sinx + cosx = 1sinx + 1cosx

_ 3 5 1 . 1
=+vV1+1 (—Wsmx+\/_wcosx)

= \/E(%sinx +%cosx)

= V2(sinx cos 45° + cos x sin 45°) ; We know that sin 45° = % and cos 45° =

= V2 sin(x + 45°)

[2] 3 sin(mx) + 3v3 cos(mx) = /32 + (3\/5)2 ;sin(nx) + Lcos(nx)
/32+(3\/§)2 /32+(3\/§)2

3 . 3v3
=49+ (9)(3) (\/W sin(mx) + mcos(nx))

3 . 33
=9+ 27 (\/ﬁ sin(mx) + mcos(nx))

3 . 33
=+/36 (\/ﬁ sin(mx) + NET: cos(nx))
=6 (2 sin(mx) + %cos(nx))
=6 G sin(mx) + g cos(nx))
. o . o o 1 . o __ V3
= 6(sin(mx) cos 60° + cos(mx) sin60°) ; cos60° = > and sin 60° = >

= 6 sin(mx + 60°)
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7.3 Double-Angle, Half-Angle and Product-Sum Formulas
Multiple-Angle and Product-to-Sum Formulas
Recall from the previous topic the following formulas:

e sin(u +v) =sinucosv * cosusinv

e cos(utv)=cosucosv+sinusinv

tanuttanv
o tan(utv)=———
( - ) 1+tanutanv

If u = v, we obtain the double-angle formulas:

e sin(2u) = 2sinucosu

e cos(2u) = cos?u —sin®u
=2cos’u—1
=1-2sin®u

e tan(2u) = 12—2—2;11

Examples:

1. sin(2x) —sinx =0

> 2sinxcosx —sinx =0

= sinx (2cosx—1)=0

= sinx =0 or 2cosx—1=0
> sinx =0 or 2cosx =1

= sinx =0 or cosx=%

T 5m
X =nm orx=§+2n1r orx=?+2nn

5 . .
> X=Nmor x = (§+ Zn)n or x = (§+ Zn)n, where n is an integer.
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2. cos(3x) = cos(2x + x)

cos(2x) cos x — sin(2x) sinx

(2 cos?x — 1) cosx — (2 sin x cos x) sin x
= 2cos3x — cosx — 2sin? x cosx
= 2cos3x — cosx — 2(1 — cos? x) cos x

3x —cosx —2cosx + 2cos3x

= 2 cos
=4cos3x —3cosx

cos(3x) = 4 cos®x — 3 cosx

Half-Angle Formulas:

From the Cosine double angle formulas, we can obtain the half-angle formulas:

e cos(2u) =1-2sinu
= 2sin?u = 1 — cos(2u)

1-cos(2u)
2

. 1—-cos(2u
= sinu = * /%

e cos(2u) =2cos?u—1

= sin?u =

= 2cos?u =1+ cos(2u)

1+cos(2u)
2

1+cos(2u
= cosu =t /%

= cos’u =
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1—cos(2u)

_ 2
1+cos(2u)

2

_|1=cos(2u)
- 1+cos(2u)

Two things can happen here:

tanu = 1—cos(2u) . 1—cos(2u)
1+cos(2u)  1—cos(2u)

_ [(1=cos(2u))?
- 1-cos2(2u)

_ [(1=cos(2u))?
- sin2(2u)

__ 1-—cos(2u)

sin(2u)
OR

1-cos(2u) _ 1+cos(2u)
tanu =
1+cos(2u)  1+cos(2u)

_ 1-cos2(2u)
T Al (1+cos(2w))?

_ sin2(2u)

T Al (1+cos(2w))?
sin(2u)

- 1+cos(2u)

In all the above, when we replace u with % (or 2u with u), we obtain the half-angle formulas:

. u 1-cosu
e sin-=+

2 2

1+cosu

e (cos—-=+

2 2

u 1-cosu sinu
e tan— = — =

2 sinu 1+cosu
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Examples:

3. cos 105" = _\/@

14c0s210° . . L Lo
= — /%, We take the negative sign because Cosine is negative in Quadrant Il.

o 1—cos(2x165°
4. tanl65’ = imcos(2xtes)
sin(2x165")
__ 1-cos330°

sin330°

OR

o sin(2x165°
tan1l65 = #
1+cos(2%x165°)
__ sin330°
1+c0s330°

_ T3 _ T3 _ 1 2=3 _ 2=3 23 _ .,
T 2h 2+v3 ~ (2+v3)(2-v3) = 4-3 1 (2-v3)

The following formulas are very important in calculus, especially when we want to find the antiderivatives
of trigonometric products.

Product-to-Sum Formulas
° sinusinv=—%(cos(u+v)—cos(u—v))
° cosucosv=% (cos(u + v) + cos(u—v))
e sinucosv = % (sin(u + v) + sin(u —v))

e cosusinv =% (sin(u + v) —sin(u —v))
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Examples:

i T_1 T, r W (E_T
5 Sin—cos— 2(sm(3+6)+sm(3 6))
=l(sm(2—n+z)+51n(2—n—z))
2 6 6 6 6
=l(sm—n+sinz)=l(51n—+51n—)
2 6 6 2

6. Rewrite as a sum of trigonometric functions:
sin(560) sin(30) = —%(COS(S@ + 36) — cos(560 — 30))

= —%(cos(89) — cos(26))

The following Sum-to-Product Formulas can be obtained from the previous Product-to-Sum Formulas:

. . . utv u-v
o 51nu+smv=251nTcosT

. . u+v . u-v
° smu—smv=2cosTsmT

u+v u—-v
e cosu+cosv=2 COS——COS——
. u+v . u-v
e COSU—COSV = —2 sin——sin—-
Examples:
. 0 . o . 75 +15° 75 —15°
7. sin75 +sin15 = 2sin cos

2

.90 60°
= 2sin—cos—
2 2

= 25sin45" cos 30°
=2><£><‘/—§=‘/—g
2 2 2
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OR
sin75° +sin 15" = sin(45° + 30°) + sin(45" — 30)

= (sin 45° cos 30" + cos 45 sin 30°) + (sin 45" cos30° — cos 45 sin 300)

= 2sin45 cos30°
—ox V2 B_V6
2 72 T 2

4x+2x  4x—2x
cos(4x)+cos(2x) _ 2C€OS— —COS— —

sin(4x)+sin(2x) Zsin#cos@

8. Simplify

6x
__€0s—~  cos(3x)

~ sinZ T sin(3x)

= cot(3x)
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7.4 Basic and More Trigonometric Equations
Remember to:
1. Treat each trigonometric function like you would treat a variable.
2. sinx = sin(x + 2nm) , the period of sinx is 21
cosx = cos(x + 2nm) , the period of cos x is 27
And  tanx = tan(x + nm), the period of tan x is n«

Where n is aninteger.

Examples:

1. sinx(sinx +1) =0

= sinx =0 or sinx+1=0
= sinx =0 or sinx = —1

When sinx =0, we have

x =0,xm, +2r, +3m, +4m, -

> x = nm, where nis an integer.
When sinx = —1, we have
3 3 . .
> X :5n+2nn = (E+2n)n, where n is an integer.

3 . .
X =NT or x = (E + Zn)n , Where nis an integer.

2. sin?x = 3 cos?x

We could choose to use the identity sin?x = 1 — cos? x,
sin?x = 3 cos?x

= 1 —cos?x = 3cos?x

= 4cos?x =1
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1
CoOS™ Xx = —
4
1 1
COSX =—- Oor cosx = ——
2 2

T 21 . .
X = E +nm or x = ?+ nm, where nis an integer.

2 2

We could choose to use the identity cos“x = 1 —sin“x

2 2

sin“x = 3cos“ x
sin?x = 3(1 — sin?x)

sin?x = 3 — 3sin?x

4sin?x =3
. 3
sin?x ==
4
. V3 . V3
Sinx :7 or sSinx = —7

T 2T . .
X = 3 +nm or x = ?+ nm, where nis an integer.

1 2 . .
X = (§+n)n or x = (§+n)n, where n is an integer.

2cos’x+cosx—1=0
(2cosx—1)(cosx+1)=0
2cosx—1=0orcosx+1=0

2cosx =1 or cosx = —1

1
COSX = Or CoOsX = -1

T 51 . .
X =§+2nn or x =?+2nn or x =m+ 2nm, where nis an integer.

G + Zn) T or x = G + Zn) m or x = (14 2n)m, where nis an integer.

=
I

secx+tanx =1

1 sinx

=1

Cosx Ccosx
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1+ sinx = cosx

(1 + sinx)? = cos? x

1+ 2sinx +sin?x = 1 —sin?x
1+ 2sinx + sin?x — 1+ sin?x =0
2sin?x 4+ 2sinx =0

2sinx (sinx+1) =0

sinx =0 or sinx+1=0

sinx =0 or sinx = —1

3 . .
X =N or x =-m + 2nm, where nis an integer.

3 . .
X =NT or x = (E + Zn)n , Where nis an integer.

cos(2x) = %

5 . .
2x = §+ 2nm or 2x = 37 + 2nm, where nis an integer.

T 5 . .
X = g+n7t or x = E7T+n7T, where nis an integer.

®
|

1 5 . .
= (g + n)n or x = (g + n) 1T, where nis an integer.

tan(3x) =1

Vs . .
3x = " + nm, where nis an integer.

=
I

s n . .
R + gn , Where nis an integer.

1 n . .
X = (E + E) 1, where nis an integer.

x 2
COS—-—=—
2 2

X T X 7
—=—42nmor==-mw+2nn
2 4 2 4
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T 7 . .
x =7 +4nm or x = o + 4nm, where nis an integer.

x = G + 4n)n or x = (% + 4n)n , Where nis an integer.
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