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Basic Definitions:

We start our treatment of probability theory by introducing some basic definitions.
Experiment:

By an experiment, we mean any procedure that:

1- Can be repeated, theoretically, an infinite number of times.

2- Has a well-defined set of possible outcomes.

Sample Outcome:

Each of the potential eventualities of an experiment is referred to as a sample outcome(s).

Sample Space:

The totality of sample outcomes is called the sample space (S).

Event:

Any designated collection of sample outcomes, including individual outcomes, the entire
sample space and the null space, constitute an event.

Occur:

An event is said to occur if the outcome of the experiment is one of the members of that event.

EXAMPLE (2-1):
Consider the experiment of flipping a coin three times.
a- What is the sample space?
b- Which sample outcomes make up the event:
A : Majority of coins show heads.

SOLUTION:
a- Sample Space (S) = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
b- A ={HHH, HHT, HTH, THH}

Algebra of Events:
Let A and B be two events defined over the sample space S, then:
The intersection of A and B, (A N B), is the event whose outcome belongs to both A and B.

The union of A and B, (A U B), is the event whose outcome belongs to either A or B or both.

Events A and B are said to be Mutually Exclusive (or disjoint) if they have no outcomes in
common, that is A N B =@, where @ is the null set (a set which contains no outcomes).

The complement of A (A° or A) is the event consisting of all outcomes in S other than those
contained in A.

Venn Diagram is a graphical format often used to simplify the manipulation of complex
events.
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= De Morgan's Laws:
Use Venn diagrams to show that:
1- (ANB)‘=A°UB°
2- (AUB)'=A°NB°

EXAMPLE (2-2):

An experiment has its sample space specified as:

S=1{1,2,3,...... , 48, 49, 50}. Define the events

A : set of numbers divisible by 6

B : set of elements divisible by 8

C : set of numbers which satisfy the relation 2", n=1, 2, 3,...

Find: 1-A,B,C 2-AUBUC 3-ANBNC

SOLUTION:

1- Events A, B, and C are:
A ={6, 12, 18, 24, 30, 36, 42, 48}
B ={8, 16, 24, 32, 40, 48}
C={2,4,8,16, 32}
2-AUBUC={6,12, 18, 24, 30, 36, 42, 48,
8, 16, 32, 40,
2, 4}
3-ANBNC={0}

EXAMPLE (2-3):
The sample space of an experiment is:

S={-20<x<14} If A={-10<x<5}and B = {-7<x <0} find.
1-AUB 2-ANB A

SOLUTION: = ' ' t
- -20 -10 0 5 14

1-AUB={-10<x<5} B
2-ANB={-7<x<0} > X
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Definitions of Probability:
Four definitions of probability have evolved over the years:
Definition I: Classical (a priori)
If the sample space S of an experiment consists of finitely many outcomes (points) that are
equally likely, then the probability of event A, P(A) is:
P(A)= Number of outcomesin A

Number of outcomesin S

Thus in particular, P(S) = 1

Definition 11: Relative Frequency (a posteriori)
Let an experiment be repeated (n) times under identical conditions then, the relative
frequency:

P(A)=lim f(A) _ Number of times A occurs

noe Number of trials
f(A) is called the frequency of (A)

Clearly 0< fA) <1
n

fA)_ 0 if (A) does not occur in the sequence of trials
n

fa) =1 if (A) occurs on each of the (n) trials

EXAMPLE (2-4):

In digital data transmission, the bit error probability is (p). If 10,000 bits are transmitted over
a noisy communication channel and 5 bits were found to be in error, find the bit error
probability (p).

SOLUTION:

According to the relative frequency definition we can estimate (p) as: (p)=—1 0 200

Definition 111: Subjective
Probability is defined as a person's measure of belief that some given event will occur.

Example:

What is the probability of establishing an independent Palestinian state in the next 2 years?
Any number we might come up with would be our own personal (subjective) assessment of
the situation.

Definition 1V: Axiomatic
Given a sample space (S), with each event (A) of (S) (subset of S) there is associated a number
P(A), called the probability of (A), such that the following axioms of probability are satisfied:
1- P(A)>0 ; Probability is nonnegative
2- P(S)=1 ; Probability of the sample space is a certain
3- For the mutually exclusive events (A) and (B) (A N B =0)
PAUB)=P(A)+P(B) ; (ANB=0)
4- 1If (S) is infinite (has infinitely many points), axiom (3) is to be replaced by:
PALUAUA3U ...... ) =P(A1) + P(A2) + P(A3) +......
where Ay, Ay, Az ...... are mutually exclusive events
(AlnAZZQ AlﬂAgzg AgﬂAgzg ......... )
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= Basic Theorems for Probability:
1- P(A%) =1-P(A)
Proof: S=AUA°
P(S) = P(A) + P(A")
1=P(A) + P(A") 2> PA)=1-PA)
2- P(@)=0
Proof:
S=SUS°
S=SU@;S°=0
P(S)=P(S)+P(@) & P(@)=0
3- P(A UB)=P(A) + P(B) - P(A N B)
Proof:
For events (A) and (B) in a sample space:
{AUB}={ANB}IU{ANB! U {BNA% S
{AUB}= 1 u 2 u 3

Where events (1) and (2) and (3) are mutually exclusive
P(AUB)=P(1) +P(2) + P(3)
P(A) =P(1) + P(2)
P(B) =P(2) + P(3)
= P(AUB)={P(1) +P(2)} +{P(2) + P(3)} - {P(2)}
= P(AUB)=P(A) + P(B)—P(A N B)

- Theorem:

If A, B, and C are three events, then:
PAAUBUC)=P(A) +P(B)+P(C)-P(ANB)-P(ANC)-P(BNC)+P(ANBNC)

EXAMPLE (2-5):
One integer is chosen at random from the numbers {1, 2, ...... , 50}. What is the probability
that the chosen number is divisible by 6? Assume all 50 outcomes are equally likely.

SOLUTION:

S={1,2,3............ , 50}

A ={6,12, 18, 24, 30, 36, 42, 48}
Number of elementsin A 8

P(A)= . =
Number of elementsinS 50

EXAMPLE (2-6):

If the probability of occurrence of an even number is twice as likely as that of an odd number
in Example (2-5). Find P(A); A is defined above.

SOLUTION:

P(S) = P(even) + P(odd) =1 ;

Let (P) be the probability of occurrence of an odd number,

then (2P) will be the probability of occurrence of an even number.
(25)(2P) + (25)(P) = 1
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1
50+25)(P)=1 = P=—
( )(P) 75

P(A)=8x 2P = =0
75

EXAMPLE (2-7):

Suppose that a company has 100 employees who are classified according to their marital
status and according to whether they are college graduates or not. It is known that 30% of the
employees are married, and the percent of graduate employees is 80%. Moreover, 10
employees are neither married nor graduates. What proportion of married employees are
graduates?

SOLUTION:

Let: M : set of married employees M G
G : set of graduate employees
N(.) : number of members in any set (.)

= N(S) =100
N(M) = 0.3 x 100 = 30 -
N(G) = 0.8 x 100 = 80 S
N(M U G)° = 10

=2 NMUG) =100-10=90
N(M U G) =N(M) + N(G) - N(M N G)
90=30+80-N(MNG)
N(MNG)=30+80-90=20

=>» Two third of the married employees in the company are graduates.

EXAMPLE (2-8):

An experiment has two possible outcomes; the first occurs with probability (P), the second
with probability (P?), find (P).

SOLUTION:

P(S)=1

P+P*=1

P2+P—-1=0

-1+\/§_

> ;  (only the positive root is taken)

P —

EXAMPLE (2-9):

A sample space “S” consists of the integers 1 to 6 inclusive. Each outcome has an associated
probability proportional to its magnitude. If one number is chosen at random, what is the
probability that an even number appears?

SOLUTION:

Sample Space “S”={1,2,3,4,5, 6}
Event (A)={2,4,6}

P(A) = P(2) + P(4) + P(6)
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6(6+1) _

w$:1:2pmzzpm:—ir— 1

i=1
=>» The proportionality constant o = %

P(A)=£+i+£=E
21 21 21 21

EXAMPLE (2-10):
Let (A) and (B) be any two events defined on (S). Suppose that P(A) = 0.4, P(B) = 0.5, and
P(ANB)=0.1.
Find the probability that:
1- (A) or (B) but not both occur.
2- None of the events (A) or (B) will occur.
3- At least one event will occur.
4- Both events occur.

SOLUTION:
P(A) = P[(A N B%) U (A N B)]
Using Venn diagram: A B
P(A) only =0.3
P(B) only = 0.4

1- P(AorBonly)=0.3+0.4=0.7

0.2
Note that: S

P(AUB) =P(A) + P(B) - P(A N B)
PAUB)=04+05-0.1=0.8
2- P(none) = P(AUB) = 0.2
3- P(at least one) =P(AUB)=0.8
4- P(both)=P(ANB)=0.1

= Discrete Probability Functions:
If the sample space generated by an experiment contains either a finite or a countable infinite
number of outcomes, then it is called a discrete sample space.
Any probability assignment on that space such that:

a- P(s;)=0
b- D P(s)=1

s; €S
is said to be a discrete probability function.
If (A) is an event defined on (S), then P(A)= ZP(Si)
s;eA
For example, the sample space, “S”={1,2,3,4,5, 6} is countably finite,
while the set of positive integers, “S” = {1,2,3,.........} is countably infinite.

EXAMPLE (2-11):

The outcome of an experiment is either a success with probability p or a failure with
probability (1-p). If the experiment is to be repeated until a success comes up for the first
time. Let X be the number of times the experiment is performed then the discrete probability
function for the countably infinite sample space is
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P(x)=pd-p)"sx=1,2,...
What is the probability that a success occurs on an an odd-numbered trial?

SOLUTION:

The sample space for the experiment is S={1, 2, 3, ....}

Let A be the event that a success occurs on an odd numbered trial. Then A consists of the
sample points: A = {1, 3,5, ...}

P(A)=P(1) + P(3) +P(5) + ...

P(A)= p(—p)™ + p(-p)** p(L-p)°" +...

P(A) = p@+p?+p*+..)= 1% , by virtue of the geometric series > x* = %
-Pp k=0 —-X
In the special case when p =%, P(A) becomes
> pA)= it 3 ppy=2
27, 1 3
4

EXAMPLE (2-12):
The discrete probability function for the countably infinite sample space S = {1, 2, 3, ...} is:

P(x):g2 i x=1,2,3,......
X

a- Find the constant “C” so that P(x) is valid discrete probability function.
b- Find the probability that the outcome of the experiment is a number less than 4.

SOLUTION:
a. By Axiom 2, P(S) =1

© © 2
SE1acyiara et e
x1 X w1 X 6 T

b. The event “A”is A={1,2, 3}
P(A) = P(1) + P(2) + P(3)
1 1 1 } 49

st+t——+— |=— =0.827
1 @ @) 6rn

> P(A)=£2(
T

= Continuous Probability Functions:
If the sample space associated with an experiment is an interval of real numbers, then (S) has
an uncountable infinite number of points and (S) is said to be continuous.

Let f (x) be a real-valued function defined on (S) such that:
a- f(x)=0
b- j f(x)dx =1

All x
The function f(x) that satisfies these conditions is called a continuous probability function.

If (A) is an event defined on (S), then P(A)= _[ f(x)dx
xeA
For example, the sample space S = {1<x <2} is uncountably infinite.

EXAMPLE (2-13):
Let the sample space of an experiment be:
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“S” = {1<x<2}. The continuous probability function defined over “S” is:
f(x) :LZ , 1<x<2.
X

a- Find (k) so that f(x) is a valid probability function.

b- Find P(x<1.5)
SOLUTION:
LS
X2

2 2
a- PO =[f(dx=1= [Sdx=1 =k=2
1 1

l.5k 2
b- P(x<15)=|—dx=—
Jl'x2 3

EXAMPLE (2-14):

The length of a pin that is a part of a wheel assembly is supposed to be 6 cm. The machine
that stamps out the parts makes them 6 + x cm long, where x varies from pin to pin according
to the probability function:

f(x) =k(x +x?) ; 0<x<2

where (k) is a constant. If a pin is longer than 7 cm, it is unusable. What proportion of pins
produced by this machine will be unusable?

SOLUTION:
P(S)=[ f(x)dx=1

2
kj(x+x2)dx=1
0
2 2
XX o1 k=L
2 2|, 28
A cotter pin is not accepted if the error x >1cm.

P(x>1)= Jz.k(x+x2)dx

2 2
2 2
23

28

2
1

6 {4 §_1_l}_§
28

P(x>1) = p(pin length >7cm) = 7

= Conditional Probabilities and Statistical Independence:

Definition:
Given two events (A) and (B) with P(A) and P(B) > 0. We define the Conditional Probability
of (A) given (B) has occurred as:

_P(ANB)

P(A/B)= 7P(B) ............... 1)

and the probability of (B) given (A) has occurred as:
_P(ANB)

P(B/A)= p(A) (2)
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In (2), (A) serves as a new (reduced) sample space
and P(B/A) is the fraction of (A) which corresponds to (A N B).

A B

EXAMPLE (2-15):

A sample space (S) consists of the integers 1 to n inclusive. Each has an associated
probability proportional to its magnitude. One integer is chosen at random, what is the
probability that number 1 is chosen given that the number selected is in the first (m) integers.

SOLUTION:

Let (A) be the event “number 1” occurs
(A) = {1}
(B) the event “outcome belongs to the first m integers”
B)={1,2,3,...,m}

S Lo oF n(n +1) 2
P=>ai=1l=2a) i=1 2 o——=1=a=
iZ:l: ' ; ; 2 n(n+1)
P(A/B):P(AHB)zp(l)z o _ o 1 > P(A/B)= 2
P(B) P(B) < n m(m 1) m(m +1)
I:)i
2

A priori probability: P(A) = ( 2 D

n(n +
A posteriori probability: P(A/B)=ﬁ

m(m +

Clearly P(A/B) > P(A) due to the additional information given by event (B).

Theorem: Multiplication Rule

If (A) and (B) are events in a sample space (S) and P(A) # 0, P(B) # 0, then:
P(A N B) = P(A) P(B/A) = P(B) P(A/B)

For three events A, B, and C:

P(A N B N C) =P(A) P(B/A) P(C/B,A)

EXAMPLE (2-16):

A certain computer becomes inoperable if two components A and B both fail. The probability
that A fails is 0.001 and the probability that B fails is 0.005. However, the probability that B
fails increases by a factor of 4 if A has failed. Calculate the probability that:

a- The computer becomes inoperable.

b- A will fail if B has failed.

SOLUTION:
P(A) = 0.001
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P(B) = 0.005
P(B/A) = 4 x 0.005 = 0.020
a- The system fails when both A and B fail, i.e.,
P(ANB)=P(A)P(B/A)
P(ANB)=0.001x0.020 =0.00002
b- P(ANB)=P(A)P(B/A) = P(B)P(A/B)
0.001x0.020

EXAMPLE (2-17):

A box contains 20 non-defective (N) items and 5 defective (D) items. Three items are drawn
without replacement.

a. Find the probability that the sequence of objects obtained is (NND) in the given order.

b. Find the probability that exactly one defective item is obtained.

SOLUTION:

a. P(NNNND) = P(N)x P(N/N)x P(D/N,N)
20,,20-1,, 5 20,,19,,5
P(NND) = (=) —)—) =(2) () (=
( ) (25)(25—1)(25—2) (25)(24)(23)
b. One defective item is obtained, when any one of the following sequences occurs:

(NND), (NDN), (DNN)

The probability of getting one defective item is the sum of the probabilities of these
sequences and is given as:

20,,19,, 5 20,,5,,19 5,,20,,19 20,,19,,5

—) () (—)) + () () () + () (D) () =3 (—)(—)) (—

()G9 (G IE)+ G NE)=BE)C )

Later in Chapter 2, we will see that Part (b) can be solved using the hyper-geometric
distribution.

Definition: Statistical Independence
Two events (A) and (B) are said to be statistically independent if:
P(A N B) =P(A) P(B)
From this definition we conclude that:
P(A/B)= P(A)P(B)
P(B)
P(B/A):M =P(B)
P(A)
This means that the probability of (A) does not depend on the occurrence or nonoccurrence of
(B) and vice versa. Hence, the given information does not change our initial perception about
the two given probabilities.

=P(A)= a posteriori probability = a priori probability

Independence of Three Events:

Events (A), (B) and (C) are independent if the following conditions are satisfied:
P(A N B)=P(A) P(B)

P(ANC)=P(A)P(C)

P(B N C) =P(B) P(C)

P(ANBNC)=P(A) P(B) P(C)

-10-
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EXAMPLE (2-18):
LetS={1,2,3,4};Pi=1 . A={1,2}and B={2, 3}. Are (A) and (B) independent?
4

SOLUTION:
P(A):%,P(B):% 5> (ANB)={2},PANB)=1

4
2> P(ANB)=P(A)P(B) => Events are independent

EXAMPLE (2-19):
Consider an experiment in which the sample space contains four outcomes {Si, Sz, S3, S4}

such that P(S;) = 1. Let events (A), (B) and (C) be defined as:
4

A={S1,S:} , B={S1,Ss} , C={Sys, S4}
Avre these events independent?

SOLUTION:
P(A)=P(B) =P(C)= 2
ANB)={S1} ; ANC)={S1} . BNC)={S:} ; ANBNC)={S:}
P(AﬂB):% ;P(AﬂC):% : P(BOC):% ;P(AﬂBﬂC):%
Check the conditions:

1 11 1 11
PANB)=; =PAPB)=_x> | PANC)= = PA)PC)= x>

1 11
PBNC)= ; =P(B)PC)= x

-1 11,11

PANBNC)=7 # PAPB)PO)=ZxZx2=1

ise conditions of independence are satisfied )

=

= Events are not independent (even though the pair

EXAMPLE (2-20): “Reliability of a series system”

Suppose that a system is made up of two components connected in series, each component
has a probability (P) of working “Reliability”. What is the probability that the system works
assuming that components work independently?

P o P —»

SOLUTION:

P(system works) = P(component 1 works N component 2 works)
P(system works) = P x P = P?

* The probability that the system works is also known as the “Reliability” of the system.

EXAMPLE (2-21): “Reliability of a parallel system”

Suppose that a system is made up of two components connected in parallel. The system
works if at least one component works properly. If each component has a probability (P) of
working “Reliability” and components work independently, find the probability that the
system works.

-11-
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SOLUTION:

Reliability of the system = P(system works) “

P(system works) = P(C; or C; or both C; and C, works) » P
=P(CLUCy) — — >
= P(Cy) + P(C2) - P(C, N Cy) » P
=P+P—(PxP)=2P—P? <

* This system fails if both components fail.

EXERCISE:

A pressure control apparatus contains 4 electronic tubes. The apparatus will not work unless
all tubes are operative. If the probability of failure of each tube is 0.03, what is the probability
of failure of the apparatus assuming that all components work independently?

EXERCISE: “Mixed system”

Find the reliability of the shown mixed system, assuming that all components work
independently, and P is the reliability (probability of working) of each component.

A\ 4
o

\4
Y

EXAMPLE (2-22):

A coin may be fair or it may have two heads. We toss it (n) times and it comes up heads on
each occasion. If our initial judgment was that both options for the coin (fair or both sides
heads) were equally likely (probable), what is our revised judgment in the light of the data?

SOLUTION:
Let A : event representing coin is fair
B : event representing coin with two heads
C : outcome of the experiment HHHHH...H

n times

A priori probabilities:
1 1

PA) == P(B) ==

(A) 5 (B) 5
=> We need to find P(A/C) =?
P(A/C) = P(ANC) _ P(A)P(C/A)

P(C) P(C)

P(A)P(HH H...H/fair coin)

P(A)P(HHH...H/fair coin) + P(B) P(HH H ... H / coin with two heads)

P(AIC)=

-12-
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()

O

P(A/C) = - = == -
1(1 1 1 1+2
== +=Q) |=| +1
2\ 2 2 2

1 2"

P(B/C)=1-P(A/C)=1- =

1+2" 1+2"

Theorem of Total Probability:

Let Aj, Ao, ..., An be a set of events defined over (S) such that:
S=AIUAU...UA, ; ANA=0 fori#j, andP(Ai)>0 fori=1,2,3,...n.
For any event (B) defined on (S):

P(B) = P(A;) P(B/A;) + P(A2) P(BIAY) + ...... + P(An) P(B/A)

: Ar B Ay
Proof: E.
For events (A) and (B) in a sample space: \\\V/ >
B ={A;:NB} U {A,NB} U {AsNB} U {A;NB} @\‘\\\\\\Z{é@
Since these events are disjoint, then: \\\

Rl

= =
P(B) = P(A1NB) + P(A2NB) + P(AsNB) + P(A4sNB) /}"’ As

But P(A N B) = P(A) P(B/A) = P(B) P(A/B)
P(B) = P(A) P(B/Ay) + P(Az) P(BIA,) + P(As) P(BI/As) + P(As) P(B/A,)

P(A) P(B/A,)
P(A) ‘Wb

-
|
v P(B/A,)

P(An)

Az

EXAMPLE (2-23):

If female students constitute 30% of the student body in the Faculty of Engineering and 40%
of them have A GPA > 80, while 25 % of the male students have their GPA > 80. What is the
probability that a person selected at random will have a GPA > 80?

SOLUTION:

A; = Event representing the selected person is a female
A, = Event representing the selected person is a male
B = Event representing GPA > 80

P(A;) =0.3

P(A2) =0.7

B = (A:NB) U (A,NB) = P(B) = P(A:NB) + P(A,NB)
P(B) = P(A;) P(B/A;) + P(Az) P(B/A))

P(B)= (0.3x0.4) + (0.7 x 0.25)

P(B) = 0.295

13-
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Baye's Theorem:

If Ay, Ag, As, ...... , An are disjoint events defined on (S), and (B) is another event defined on
(S) (same conditions as above), then:

P(A))P(B/A;) P(A;NB)

NG D B

P(A,/B) =

EXAMPLE (2-24):

Suppose that when a machine is adjusted properly, 50% of the items produced by it are of
high quality and the other 50% are of medium quality. Suppose, however, that the machine is
improperly adjusted during 10% of the time and that under these conditions 25% of the items
produced by it are of high quality and 75% are of medium quality.

a- Suppose that one item produced by the machine is selected at random, find the
probability that it is of medium quality.

b- If one item is selected at random, and found to be of medium quality, what is the
probability that the machine was adjusted properly.

SOLUTION:

A; = Event representing machine is properly adjusted
A, = Event representing machine is improperly adjusted
H = Event representing item is of high quality

M = Event representing item is of medium quality
From the problem statement we have:

PA) =09 : P(A) =0.1
P(H/A) =05 ; P(H/A;)=025
P(M/A) =05 ; P(M/Ay)=0.75 A1 M
a- P(M)=P(A; N M) + P(A, N M) A,
P(M) = P(A;) P(M/A,) + P(Az) P(M/A,)
P(M) = (0.9)(0.5) + (0.1)(0.75) = 0.525 @
b P(AM)= P(A,"M) _P(A,) P(M/A,)
P(M) P(M)

P(A, /M) = 09)05) _ 4 6571
(0.525)

0.75

-14-
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EXAMPLE (2-25):

Consider the problem of transmitting binary data over a noisy communication channel. Due
to the presence of noise, a certain amount of transmission error is introduced. Suppose that
the probability of transmitting a binary 0 is 0.7 (70% of transmitted digits are zeros) and
there is a 0.8 probability that a given 0 or 1 being received properly.

a- What is the probability of receiving a binary 1.
b- If alisreceived, what is the probability that a 0 was sent.

SOLUTION:

Ay = Event represent!ng 0 !s sent p( A§0: 0.7 Bo
A; = Event representing 1 is sent

By = Event representing O is received

B1 = Event representing 1 is received

From the problem statement we have:

P(Ao) =07 ; P(A) =03 A B,
P(Bo/Ag) =0.8 ; P(Bo/Ay)=0.2 P(A) =03

P(Blle) =02 ; P(Bl/Al) =0.8

a- P(Bl) = P(Ao) P(Bl/Ao) + P(Al) P(Bl/Al)
P(B) = (0.7)(0.2) + (0.3)(0.8) = 0.38
P(Bo) = 1 - P(B1) = 0.62

P(A; N B;) _ P(A,) P(B/A,)

PB)  P()

b- P(A,/B,)=

p(a, /8, )= 0D _ 4 3604
(0.38)

EXAMPLE (2-26):

In a factory, four machines produce the same product. Machine A; produces 10% of the
product, A, 20%, Az 30%, and A4 40%. The proportion of defective items produced by the
machines follows:

A2 0.001 ; A 0005 ; Az 0005 ; Ay 0.002

An item selected at random is found to be defective, what is the probability that the item was
produced by machine A;?

SOLUTION:
Let D be the event: Selected item is defective

P(D) = P(Ay) P(DIAL) + P(A2) P(DIA,) + P(A3) P(D/As) + P(As) P(D/AL)
P(D) = (0.1 x 0.001) + (0.2 x 0.005) + (0.3 x 0.005) + (0.4 x 0.002)
P(D) = 0.0034
P(AD) = P(A,) P(D/A;) _ (0.1)(0.001) _0.0001 _ 1

P(D) (0.0034)  0.0034 34
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Counting techniques:
Here we introduce systematic counting of sample points in a sample space. This is necessary
for computing the probability P(A) in experiments with a finite sample space (S) consisting of

(n) equally likely outcomes. Then each outcome has probability (1)
n

And if (A) consists of (m) outcomes, then P(A) _m
n

Multiplication Rule:
If operation A can be performed in n; different ways and operation B in n, different ways, then
the sequence (operation A , operation B) can be performed in n; x n, different ways.

EXAMPLE (2-27):

There are two roads between A and B and four roads between B and C. How many different
routes can one travel between A and C.

SOLUTION: G‘G.@
n=2x4=8 N

Permutation:

Consider an urn having (n) distinguishable objects (numbered 1 to n). We perform the
following two experiments:

1- Sampling without replacement:

An object is drawn; its number is recorded and then put aside, another object is drawn; its
number is recorded and then put aside, the process is repeated (k) times. The total number of
ordered sequences {Xi, X, ....... , Xk} (repetition is not allowed) called permutation is:
N=n(n-1)(n-2)...... (n—k+1)

N ™ (1) @ @
(n—k)! @
where nl=n(n-1)(n-2)...... 3)2) (1) -~ @

2- Sampling with replacement:

If in the previous experiment, each drawn object is dropped back into the urn and the process
is repeated (k) times. The number of possible sequences {xi, X, ....... , Xk} Of length (k) that
can b(i formed from the set of (n) distinct objects (repetition allowed):

N=n" i 2)

EXAMPLE (2-28):

How many different five-letter computer passwords can be formed:
a- If a letter can be used more than once.
b- If each word contains each letter no more than once.

SOLUTION:
a- N=(26)
|
b N 28
(26-5)!
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EXAMPLE (2-29):

An apartment building has eight floors (numbered 1 to 8). If seven people get on the elevator
on the fist floor, what is the probability that:
f

a- All get off on different floors?
b- All get off on the same floor?

SOLUTION:

Number of points in the sample space:
First person can get off at any of the 7 floors.

Person (2) can get off at any of the 7 floors and so on.

N| W & O O | 0
=R | =9+ | =9 | =9 | =8¢ | =9

=>» The number of ways people can get off:
(N)=7x7x7x7Tx7Tx7x7=17
a- Here the problem is to find the number of permutations of 7 objects taking 7 at a time.
7!
T
b- Here there are 7 ways whereby all seven persons get off on the same floor.
7

7

ARRERE

EXAMPLE (2-30):
If the number of people getting on the elevator on the first floor is 3:

a- Find the probability they get off the elevator on different floors.
b- Find the probability they get off the elevator on the same floor.

SOLUTION:
Number of points in the sample space (N) =7 x7 x 7 =73

_ 7x6x5

a- P =3

EXAMPLE (2-31):

If the number of floors is 5 (numbered 1 to 5) and the number of people getting on the
elevator is 8. Find the probability that exactly 2 people get off the elevator on each floor.

SOLUTION:
Number of points in the sample space (N) =4 x 4 x 4 x 4 x 4 x 4 x 4 x 4 = 4°

48

-17-
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EXAMPLE (2-32):

To determine an "odd man out", (n) players each toss a fair coin. If one player's coin turns up
differently from all the others, that person is declared the odd man out. Let (A) be the event
that some one is declared an odd man out.

a- Find P(A)
b- Find the probability that the game is terminated with an odd man out after (k) trials

SOLUTION:

Number of outcomes in event (A)
Number of possiblesequences O000O0.- d
H H H H H H

T T T T T T

a- P(A)=

number of outcomes leading to an odd man out:
(n — 1) Heads and one Tail

(n-1) 'I;ails and one Head HHHHH . T
P(A)= 2?=2?_1 HHHH .. TH

with an odd man out, a success is obtained

HHH .. THH |} = (n)
and the game is over. :

b- A second trial is needed when the experiment THHHH .. H

ends with a failure:
<> P(a second trial is needed) = 1 — P(A) TTTTT .. H
For (k) trials: TTTT..HT
P(FFFF..F S)=P(F)<* P(S) TTT..HTT = (n)
k-1 Trials -
M. k-1
P(F ilFTi.l.s. F S)=[1-P(A)* P(A) HTTTT LT

= Combination:

In permutation, the order of the selected objects is essential. In contrast, a combination of
a given objects means any selection of one or more objects without regard to order.

The number of combinations of (n) different objects, taken (k) at a time, without repetition is
the number of sets that can be made up from the (n) given objects, each set containing (k)
different objects and no two sets containing exactly the same (k) objects.

The number is:

ny n!
k) k'(n=k)!

Note that:

A K) object Firstselect (k A the (k
rrange (K) objects ic the same as |_rs select (k) and then rrange (_e( )
selected from (n) objects from (n) selected objects

N [E] k!

N=(n}<k! where N = n -> (nj=E:L
k (n—k)! k) k! k'(n-K)!
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EXAMPLE (2-33):

From four persons (set of elements), how many committees (subsets) of two members
(elements) may be chosen?

SOLUTION:

Let the persons be identified by the initials A, B, C and D
Subsets: (A,B),(A,C),(A,D),(B,C),(B,D),(C,D)

s
2) 2(4-2)!

Missing sequences: (A, A),(B,B),(C,C), (D, D) = (repetition is not allowed)
Missing sequences: (B, A), (C,A), (D, A)
(c,B),(D,B),(D,C =>» (order is not important)

EXAMPLE (2-34):
Consider the rolling of a die twice, how many pairs of numbers can be formed for each case?

SOLUTION:
n=6and k=2
Case |: Permutation D> 1 2 3 4 5 6
a- With repetition Dy
o 1| @) | @2 | @3) | @ | @5 | 16
b- Without repetition 2 | (21) | 22) | 23) | (24) | (25) | (26)
m o8 31361 ]GB2]B3|GY] @G5 |36
T (h-k)! (6-2) 4 4D @263 ] @9 ] @5 | @46
Case |I: Combination S 1B | 52| B3 | B54) | (55 | (556)
(”J _n 8 . [6]6D 6263|6656
k] KI(n—k)! 21(6-2)!

EXAMPLE (2-35):

In how many ways can we arrange 5 balls numbered 1 to 5 in 10 baskets each of which can
accommodate one ball?

SOLUTION:

n! 00 10!

The number of ways (N) = = =
(hn—k)! (@0-5)! 5

NOTE:
If we remove the numbers of the balls so that the balls are no longer distinguishable, then:

n n! 10! 10!
The number of ways — = =
k) kl(n—k)! 5/(10-5)! 5 5

This is because the permutation within the 5 balls is no longer needed.

Arrangement of Elements of Two Distinct Types
When a set contains only elements of two distinct types, type (1) consists of k elements and
type (2) consists of (n-k) elements, then the number of different arrangements of all the
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elements in the set is given by the binomial coefficient. Suppose, for example, that we have k
ones and (n-k) zeros to be arranged in a row, then the number of binary numbers that can be

n
formed is [kj If n =4 and k = 1, then the possible binary numbers are (0001, 0010, 0100,
1000).

Exercise: How many different binary numbers of five digits can be formed from the numbers
1, 0? List these numbers.

Exercise: How many different binary numbers of five digits can be formed from the numbers
1, 0 such that each number contains two ones? List these numbers.

Exercise: In how many ways can a group of five persons be seated in a row of 10 chairs?

The Multinomial Coefficient:
The number of ways to arrange n items of which n; are of one type, n, of a second type, ..., ng

L n n!
of a k'th type isgiven by N = - =
peig Y (nl n, : nkj n!n,l.n!

Comments: Stirling's formula
Computing n! can be approximated by: n!~+/2rn"*2e™
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Definition:

A real-valued function whose domain is the sample space is called a random variable (r.v).
The random variable is given an uppercase letter X, Y, Z, ... while the values assumed by this
random variable are given lowercase letters x, y, z, ...

The whole idea behind the r.v is a one to one mapping from the sample space on the real line
via the mapping function X(s).

Associated with each discrete r.v (X) is a Probability Mass Function P(X = x). This density
function is the sum of all probabilities associated with the outcomes in the sample space that
get mapped into (x) by the mapping function (random variable X).

Associated with each continuous r.v (X) is a Probability Density Function (pdf) fx(x). This fx(x)
is not the probability that the random variable (X) takes on the value (x), rather fx(x) is a
continuous curve having the property that:

P(a< X sb)z'T f, () dx

Definition:
The cumulative distribution function of a r.v (X) defined on a sample space (S) is given by:
Fx(X) = P{X < x}

Properties of Fx(x)

1- Fx(— OO) =0

2' Fx(OO) = 1

3- 0<Fx(x) <1

4- Fx(Xl) < Fx(Xz) if X1 £ X2

5- Fx(X") =Fx(x)  function is continuous from the right
6- P{Xl < X< X2} = Fx(Xz) — FX(Xl)

EXAMPLE (3-1):

A chance experiment has two possible outcomes, a success with probability 0.75 and a failure
with probability 0.25. Mapping function (random variable X) is defined as:

x =1 if outcome is a success

x =0 if outcome is a failure

SOLUTION:
P(X<0)=0 ; P(X <0)=0.25 ; P(X<1)=0.25 ; PX<1)=1
A Bk
i i 1.0
| 0.75 !
| 0.25 |
5 ; 0.25
J ¢~  Real Line > %
0 1 > X 0 1
Probability Mass Function Cumulative Distribution Function
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EXAMPLE (3-2):

Let the above experiment be conducted three times in a row.
a- Find the sample space.
b- Define a random variable (X) as X = number of successes in the three trials.
c- Find the probability mass function P(X = x).
d- Find the cumulative distribution function Fx(x) = P{X < x}

SOLUTION:
In the table below we show the possible outcomes and the mapping process:

Sample Outcome P(si) X P(X = x)

F F F (0.25)° 0 (0.25)° = 0.015625

F F S (0.75) (0.25)°

S F F (0.75) (0.25) | 1 | 3x(0.75) (0.25)* = 0.140625
F S F (0.75) (0.25)°

S S F (0.75)% (0.25)

S F S (0.75)°(0.25) | 2 | 3x(0.75)? (0.25) = 0.421875
F S S (0.75)% (0.25)

S S S (0.75)° 3 (0.75)° = 0.421875

" ! I P(X=2) | P(X=2) 1
Probability | . 0.22187% ' oapias |
Mass : | | |
Function : :
! PX=1) ! 5 i
: 0.140625 ! , i
. P(X=0) I I I
! 0.015625 E E I )
~pl -’ - < Real Lme: %
0 1 2 3
= < P(0) +P(1)+(2) + P(3)
4 Fx(x) =P{X < x} ~n
Cumulative
Distribution P(0) + P(1) + P(2)
Function = 0578125
P(0) + P(1)
=0.15625
P(X = 0)
‘ =0.015625
> X
0 1 2 3

Binomial Distribution: (n) = number of trials ; (x) number of successes in (n) trials
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EXAMPLE (3-3):

SOLUTION:

Let (A) denote you,

(B) denote your friend.
The random variable (X) assumes four possible values 0, 1, 2, 3 as shown below:

Number of different ways by which the 5 people can arrange themselves = 5!
This is the total number of points in the sample space.

ABOOO
OABOO
OOABO
OOOAB

= (X=0)

AOBOO
OAOBO! = (X=1)
OOAOB

AOOBO

OAOOB}:(X:a

AOOOB| = (X=3)

Suppose that 5 people including you and your friend line up at random. Let (X) denote the
number of people standing between you and your friend. Find the probability mass function
for the random variable (X).

v
X

Any Sequence similar to what is shown can be done in: ZL e §L
you andyour theother
friend people
| |
P(X=0)= 4x21x 3! _04
3 ;!3 [
x 21x 3!
Ix 3! 0.3
WX=3=Zi%ii=az
Ix 3! 0.2
p(x=3)= 2234,
51
0.1
0 1 2 3

Probability Mass Function
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Continuous Random Variables and Distribution:

Definition:
A random variable and its distribution are called of continuous type if the corresponding
cumulative distribution function Fx(x) can be given by an integral of the form:

Fe 09 = [ £ (u)du
where fx(x) is the probability density function related to Fx(x) by:

e = (9

Properties of fx(x)
1- fx(x) >0 ; nonnegative

2- jfx(x)dx =1

X2
3- P{xas<X<xy}= f f, (u)du ; Probability is the area under the fx(x) curve between x; and X,
x1

EXAMPLE (3-4):
Let (X) have the pdf:  fx(x) =0.75 (1 —-x?) ; {-1<x <1}

1- Verify that fy(x) is indeed a valid pdf. ) &
2- Find:
a- Fx(X) 0.75
1 1
b- P{—-=<X <=
{-5=x<2} 7/ 7
SOLUTION:
o 1 T » X
1- [f,dx =1 > 2[0.75(1-x*) dx 1
“® 0 Probability Density Function
3 1
= 2x(0.75u -0.75% =2(0.75-0.25) =1.0 Fx(X) 4

0
1

2-a) Fy()=[0.75(1-u*)du =05 +0.75x - 0.25 x° 1
- 05
}= [0.75(1-u®)du /
\ ‘ » X

-1 1
Cumulative Distribution Function

2-b) P{—%sx <

N |~

|
o | — |

= Fx(%) —Fx(- %) =0.6875
EXERCISE:
Find Xo such that Fx(x) = P{X < X0} =0.95

SOLUTION:
P{X < X0} =0.5+0.75%9—0.25 %X, = 0.95 = 3xo—x°=1.8 = xo = 0.73
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Mean and Variance of a Distribution:

Definition:

The mean value or expected value of a random variable (X) is defined as:
py =E{X}=> x; P(X=x;) if X is discrete

n, =E{X}= j x £, () dx if X is continuous
Definition:

The variance of a random variable (X) is defined as:
ox =E{(X-p,)?}=D_(X-n,)* P(X=x,) if x is discrete

or =E{(X-n,)’}= j(x-ux)2 f (¥ dx if xis continuous

Gy =1/0x is the standard deviation

The variance is the measure of the spread of the distribution.

Definition:
For any random variable (X) and any continuous function Y = g (X), the expected value of
g(X) is defined as:

E{g(X)}=> a(x,) P(X=x,) if x is discrete
E{g(X)}= Tg(x) f, () dx if X is continuous
Theorem:

Let (X) be a random variable with mean p, , then:
oy =E(X?)-pj
Proof:

0% ~E{(X-11)}= [ (x-1)* F (9 Ix
0% = [ (7 - 2xquy +142) Fy (9 o

o2 :szfx(x) dx-zuxjxfx(x) dx +p? jfx(x) dx

ox =E(X?)-2uypy +pk
oy =E(X?)- uj

Illustration:

. The center of mass for a system of particles of masses m;, m; ..., m, placed at X1, X5 ..., Xp iS:

1
Xem =W(lel+x2m2+ ...... X,m,)
If we let my = pg, my = po, ..., then:
Xem = X1P; + X505 + e X,Pp, (The mean of a discrete distribution)

If p(x) is the density of a rigid body along the x-axis, then the center of mass is:
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1
Xem = ij p(x) dx

Where M = jp(x) dx
Again, if p(x) is replaced by fx(x), the pdf function, then:
Xem :jx f, (X) dx is the mean of continuous distribution.

Moment of Inertia:
3. If the particles in (1) above rotate with angular velocity (w), then the moment of inertia is
evaluated as:

n

2

I =) m;x;
i=1

With m; replaced by pj, we have:
| :Zpi Xi2
i=1

4. If the rigid body in (2) rotates with angular velocity (w), then:
|=jx2 p(x) dx > E(xz)zsz f. (X) dx

5. The variance E{(X -, )’} parallels the moment of inertia about the center of mass.

“Recall the parallel axis theorem”
| = lem + M I
E(x*) =0 +E*(X)

EXAMPLE (3-5):

In the kinetic theory of gases, the distance (x) that a molecule travels between collisions is
described by the exponential density function

1 =
fy (¥ = e* x>0
a- The mean free path defined as the average distance between collisions is calculated as:

Mean Free Path = p, = E{X}=[x f, (x) dx
0

T = 1
=|x|=|e*dX=A=————
! (xj V2 nd* NIV
Where (N/V) is the number of molecules per unit volume and (d) is the molecular diameter.

b- If the average speed of a molecule is v m/s, then the average collision rate is

Rate = ~
A
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EXAMPLE (3-6):

Maxwell’s Distribution Law:
The speed of gas molecules follows the distribution:

3
2 MV A f
f(V)=4n “V2 g2RT y>Q )
27RT
Where v is the molecular speed

T is the gas temperature in Kelvin
R is the gas constant (8.31 J/mol.K)
M is the molecular mass of the gas

a- Find the average speed, v
b- Find the root mean square speed Vims
c- Find the most probable speed

SOLUTION:

a v =E(v) =°_§vf(v)dv: /T—MT

b- E{vz}:(vm)zzofvzf(v) dv :% > vmzw/?’RVT . s =JEG)

c- The most probable speed is the speed at which f(v)attains its maximum value.
Therefore, we differentiate f (v) with respect to (v), set the derivative to zero and solve
for the maximum. The result is:

Most probable speed = 1/2R7T

<vVv

Root =
Mean = E()
Square & V*

> rms=,/E(v?)

Exercise
The radial probability density function for the ground state of the hydrogen atom (the pdf of
the electron position from the atom) is given by

f(r)= is rZe 2 forr>0
a

where a is the Bohr radius (a = 52.9 pm).

a. What is the distance from the center of the atom that the electron is most likely to be
found?

b. Find the average value of r?, (the mean distance of the electron from the center of the
atom).

c. What is the probability that the electron will be found within a sphere of radius a
centered at the origin?

Theorem:
Let (X) be a random variable with mean 11, and variance % .
DefineY =aX+b ; (@) and (b) are real constants, then:

-27-



SINGLE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

CHAPTER Il

=T(ax+b)fx(x) dx

—a[xf, (Y dx+b[f, (Ydx > u =au, +b

b- &% =E{(Y-u,)"}

=E{[(ax +b) - (aux +b)I°}

—a?E{(x- 1,0}

= E{falx- 1)}

2 _ .2 2
2 o, =3" o0y

EXAMPLE (3-7):

Find the mean and the variance of the binomial distribution considered earlier (Example 3-2)

withn=3and P(S) =0.75
SOLUTION:

Mean = p, =E{X}=>x; P(X=x;)

X P(X =x) X.P(X=x)
0 0.015625 0
1 0.140625 0.140625
2 0.421875 0.843750
3 0.421875 1.265625
> 2.25

D X; P(X=x;) =2.25=3x0.75

= E(X)=np =number of trials x probability of a success

Variance = 6% =E(X?) -[E(X)]?

E(X*}= 3 x¢ P(X=x,)

X N PX=x) | x*.P(X=x)

0 0 0.015625 0

1 1 0.140625 0.140625

2 4 0.421875 1.687500

3 9 0.421875 3.796875
Y 5.625

o =5.625-(2.25)* =0.5625 =3x 0.75x 0.25
= number of trials x probability of success x probability of Failure = ¢4 =np(1- p)
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EXAMPLE (3-8):

Find the mean and the variance of the uniform distribution shown in the figure.

SOLUTION:
S  Tx(x)

Mean = p, =E{X}=[xf, () dx

1
b —_—
1 a+b b-a
=X dx =
Hx ! b-a 2 o
Var(X) = 6% =E(X?)-[E(X)]* a b
b 3 .3 2 2
E{Xz}:sz 1 dx:b a” _a +ab+b
- b-a 3(b-a) 3
, a’+ab+b? (a+bj2 (b—a)?
Gx: - =
3 2 12

EXAMPLE (3-9):

X~ Hy
Ox
SOLUTION:

Let Z= (Standardized r.v.), show that the mean of (Z) is zero and the variance is 1.

) X
Z can be written as: Z=— —®X _ax 4 b
Gx Ox

Mean = i, =E{Z}=—— E{(X -, )}=——{EC)~E(,)} =0

1
Var(Z) = 65 =—-ox =1
Ox

EXAMPLE (3-10):

Let X be a discrete random variable with the following pmf: P(X = 0) = 0.4, P(X =1)= 0.3
P(X=2)=0.2,P(X = 3)= 0.1. Find the mean and variance of X.
SOLUTION:
Ly = E{X}:Z:xi P(X=x,;)=0(0.4)+1(0.3)+2(0.2)+3(0.1) = 1
E{X2}=fo P(X=x,)= 0(0.4) + 1(0.3) + (2)°(0.2) + (3)*(0.1) = 2
Variance = o3 =E(X*)-[EX)? =2-1=1

Some useful properties of expectation:
E{a}=a ; als aconstant

E{ag(X)}=a E{g(X)} ; ais aconstant
E{9.(X)+9,(X)}=E{g, X)}+ E{g9,(X)}
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- The median and the mode:

- Definition:
For a continuous random variable (X), the median of the distribution of (X) is defined to be a
point (Xo) such that:
P(X<Xx,)=P(X=x,)

- Definition:

If a random variable (X) has a pdf fx(x), then the value of (x) for which fx(x) is maximum is
called the mode of the distribution.

EXAMPLE (3-11):

Find the median and the mode for the random variable X with pdf: f, (x) = 2xe e , X >0

SOLUTION:
The median is a point (Xo) such that
¥

Xo
O 2xe’ “dx = O 2xe’ “dx = 1.
0 Xg

(Xo) is the solution to e *® = 0.5 which results in (xo) = 0.832554

To find the mode we differentiate f, (x) with respect to x and set the derivative to zero

d;(x) =2 X 4% = 0, the solution of whichis x = 1/ /2.
X

= Common Discrete Random Variables:

I. The Binomial Distribution
- Definition:
A random experiment consisting of (n) repeated trials such that:

a- The trials are independent.
b- Each trial results in only two possible outcomes, a success and a failure.
c- The probability of a success (p) on each trial remains constant

Is called a binomial experiment.

The r.v (X) that equals the number of trials that results in a success has a binomial distribution
with parameters (n) and (p).

The probability mass function of (X) is:

Theorem:

If (X) is a binomial r.v with parameters (n) and (p), then:
Hx =E(X)=np

oi =Var(X)=np(1-p)

Proof:
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First we show that z, =np

Hy =E() = Zx( j(p) - p)“=i_ T X),qo)( P
-Z(X 1),( )(p)( p)"™

Let u= x -1. In terms of u, the summation above can be expressed as

_n—l n(n_l)! u+l g n-1-u
ﬂx—g—u!(n_l_u)!(p) (1-p)

Now substitute m = n-1, and take n and p out of the summation we get

m

My =Np ;—u! (mmi ) P)'a-pm

The summation on the right hand side equals 1 since this is the summation of probabilities of a
binomial distribution with parameters m and p. The mean value of X is then

Hy =Np
This result simply states that the mean value of a binomial random variable with parameters
(n, p) equals the number of the times the experiment is repeated times the probability of a
success on each trial.

To find the variance of X we find it convenient to first find E(X(X 1)) as follows:

E(X(X-1))= ZX(X 1)( j(p) @-p)"= ZX(X 1) )(p)( p)"
—_ n' X n—-x
B ;X(X_D x(x—l)(x—2)!(n—x)!(p) =)

n

- n! X n—x
= ;(X_Z)!(n_x)!(p) (1-p)

As we did before, let u= x-2 or x = u+2. The summation above becomes
En(n-D(n-2)!, .. n_2—u
= ul(n—2-u)!

Next let m =n-2 and take out of the summation n, (n-1) and p?, we get

= n(n-1)p’ Z - ),(p)( p)™
Again, the summatlon on the right hand side equals 1 since it represents the sum of
probabilities for a binomial distribution with parameters m and p. Therefore,

E(X(X-1)) =n(n-1)p®

But
E(X(X-1)) =E(X? - X) = E(X?) - E(X)
Or, E(X?) = E(X) + E(X(X-1))
From which we conclude that:
o, =E(X*)-(1,)" =np+n(n-1)p —(np)°
This simplifies to
o’ =np(1-p)
which concludes the proof.
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EXAMPLE (3-12):
Suppose that the probability that any particle emitted by a radioactive material will penetrate
a certain shield is 0.02. If 10 particles are emitted. Find the probability that:

a- Exactly one particle will penetrate the shield.
b- At least two particles will penetrate the shield.
SOLUTION:

P(X=X) =[;J p*(l-p)"™ ; p=0.02 ; n=10
a- P(X=1) = (110} (0.02)*(1—0.02)**

b- P(X >2) = i(lfj (0.02)* (1-0.02)**

Also: P(X=0) + P(X=1) + P(X>2) = 1
S P(X22)=1-[P(X=0)+P(X=1)]

lo 0 10-0 10 1 10-1
P(X>2)=1- H ) j (0.02)° (1 - 0.02)"*° + ( ) j (0.02)'(1-0.02) }

EXAMPLE (3-13):

Consider the parallel system shown in the figure. The system fails if at least three of the five
machines making up the system fail. Find the reliability of the system assuming that the
probability of failure of each unit is 0.1 over a given period of time.

SOLUTION:

Let (X) be the number of machines in failure.
(X) has a binomial distribution.

P(system fails) = P(number of machines in failure >3) @ @ @ @ @

= P(x>3)

(3 Jera-ere 3 era-en(2or

P(system fails) = 0.00856 ; whenp =0.1
=> Reliability = 1 — P(Failure) = 0.99144

EXAMPLE (3-14):

The process of manufacturing screws is checked every hour by inspecting 10 screws selected
at random from the hour’s production. If one or more screws are found defective, the
production process is halted and carefully examined. Otherwise the process continues. From
past experience it is known that 1% of the screws produced are defective. Find the probability
that the process is not halted.

SOLUTION:

Let (X) be the number of defective items in the sample.
P(system is not halted) = P(X = 0) = P(number of defective items is zero)

10) v 10-0
=( Oj(p) (1-p)
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_ (13 J (0.01)" (099" = (0.99)"* = 0.9043

EXAMPLE (3-15):
Thirty students in a class compare birthdays. What is the probability that:
a- 5 of the students have their birthday in January?

b- 5 of the students have their birthday on January 12

c- At least one student is born in January?

SOLUTION:
a- P(success)= % ; P(failure) = % ,  Number of trials (n) = 30
Required number of successes (k) =5
n
P(5successes in 30 trials) = (kj P)*@A-p)"*
30 5) 30-5 30 5 25
P(5successes in 30 trials) = L = ERNE
5/)\12) \12 5/)\12) \12
1 . 364 . _
b- P(success)=—— ; P(failure)=——, Number of trials (n) = 30
365 365

Required number of successes (k) =5

: : n 30\( 1 )°(364)
P(5successes in 30 trials) = K(1—p)"k = ==
( ) @(p) (1-p) (5}(3&;} [365)

c- P(success):i ; P(failure):E
12 12

P(xz1)=1-P(X:O){l—foj(ij (E) _ }=1—0.0735=0.9265
0 )l12) (12

EXAMPLE (3-16):

The captain of a navy gunboat orders a volley of 25 missiles to be fired at random along
a 500-foot stretch of shoreline that he hopes to establish as a beach head. Dug into the beach
is a 30-foot long bunker serving as the enemy’s first line of defense.

a. What is the probability that exactly three shells will hit the bunker?

b. Find the number of shells expected to hit the bunker. 500 ft

SOLUTION: 30 ft
P(success) = 30 =0.06
500
n
P(3successes in 25 shells) = kj P)@-p) "t

Forp=0.06and n =25
g 25 ) 25-3 25 3 22
P(3successes in 25shells) = 3 (0.06)°(1-0.06) =5 (0.06)°(0.94)

b. E(x) =n p = 25(0.06)= 1.5.
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I1. The Geometric Distribution

Let the outcome of an experiment be either a success with probability (p) or a failure with
probability (1 — p). Let (X) be the number of times the experiment is performed to the first
occurrence of a success. Then (X) is a discrete random variable with integer values ranging from
one to infinity. The probability mass function of (X) is:

P(X=X) =P(FFFF...FS)=P(F)**P(S)

x-1
=A-p) ) ;x=1,2,3,......
- Theorem:

The mean and the variance of (X) are:

1
iy = E(X) :6

1-p

2

oy =Var(X) =

EXAMPLE (3-17):
Let the probability of occurrence of a flood of magnitude greater than a critical magnitude in
a given year be 0.02. Assuming that floods occur independently, determine the “return period”
defined as the average number of years between floods.

SOLUTION:
(X) has a geometric distribution with p =0.01
1 1
= E(X)=—=——-=50years
Hx (X) D 002 y

EXAMPLE (3-18):

n
S

Show that the mean value of the geometric distribution = 1/p and the variance is o5 = .

©

where p is the probability of a success.
SOLUTION:

f =E(X) = 3 x plL- p)** = p{1+2(1-p)+3(1-p)* +4(L— )’ +..}

x=1
Recall the geometric series

1
1+u+ul+ud+..=—

1-u
Differentiating both sides with respect to u, we get
1
(@-u)?
Making use of this result (with u =1-p), the expected value of X becomes
1 1

H Py p
To find the variance, we first find E(X(X-1)) as
E(X(X-1)) = iX(X—l) p-p)*" = pl2QA- p)+3(2(A- p)* +4(3A-p)’ +..}

x=1

E(X(X-1)) = p(1-p{2(1)+3(2)(1- p)' +4(3)AL-p)* +..}

1+2u+3u° +...=
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Differentiating the geometric series twice with respect to u

2
2+3(2u+4@B)u’...=
@u+4@u’= s
Making use of this result (with u=1-p), we get
2 2(1-P)

EX(X-1) = p(l-p) 5 =——7—
p p

But, E(X(X-1)) = E(X?* - X) = E(X?) - E(X)
Or, E(X?) = E(X) + E(X(X-1))
From which we conclude that:

CEQC) () =2+ AR 1 _(-p)
p p p p

Hyper-geometric Distribution

Consider the sampling without replacement of a lot of (N) items, (k) of which are of one type
and (N — k) of a second type. The probability of obtaining (x) items in a selection of (n) items
without replacement obeys the hyper-geometric distribution:

)

NOTE:
Type | ,/ Type Il
p :% is the ratio of items of type (I) to the total population

Sample of size (n)

Type | Type Il
k (N —Kk)

PX=X) =

(N objects)

Theorem:
The mean and the variance of the hyper-geometric random variable are:

k
N :E(X):nN:np

ooty

RO CR

EXAMPLE (3-19):

Fifty small electric motors are to be shipped. But before such a shipment is accepted, an
inspector chooses 5 of the motors randomly and inspects them. If none of these tested motors
are defective, the lot is accepted. If one or more are found to be defective, the entire shipment
is inspected. Suppose that there are, in fact, three defective motors in the lot. What is the
probability that the entire shipment is inspected?

SOLUTION:
Let (X) be the number of defective motors found, then (X) assumes the values (0,1, 2, 3).
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P(entire shipment is inspected) =P(X > 1) =1-P(X =0)

O )
s

(3J [47j
0)\ 5 .
P(X=0)=—2———= =0.72 (The lot is accepted)

v

P(X >1)=1-0.72=0.28

EXAMPLE (3-20):
A committee of seven members is to be formed at random from a class with 25 students of

whom 15 are girls. Find the probability that:

a- No girls are among the committee
b- All committee members are girls
c- The majority of the members are girls

SOLUTION:
Let (X) represents the number of girls in the committee.

15)(10
(o)l7)
25
7
151(10
7o)
25
7
c- P(majority are girls) =P(X=4) + P(X=5) +P(X=6) + P(X =7)
[15](10 J
L x )\ 7-X
:Z; 25
7

a- P(X=0)=

b- P(X=7)=

Theorem:

For large (N), one can use the approximation:
n

P(X:x);{ ij(l—P)”X ; p:£
X N

This approximation gives very good results if I: <0.1, for the example above:

5
P= 530 =006 = P(X=0)= (OJ (0.06)°(1-0.06)°° =0.733
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I11. Poisson Distribution

- Definition:
A discrete random variable (X) is said to have a Poisson distribution if it has the following
probability mass function:

X

P(X =x)=e® b—l ; x=0,1,2,......... where (b) is a positive constant.
x!

To verify that this is, indeed, a valid probability mass function we need to show that:

Sttt

X=

The left hand side is expanded aS'
3

bx b
eb D S
z XZ; o203
The summation on the right side is easily recognized as the power series expansion of e”.
Therefore

- Theorem:
If (X) is a Poisson r.v with parameter (b), then its mean and variance are:
px =E(X)=b

o =Var(X) =b

Proof:
First we find the mean value of X. The method we follow is quite similar to the one used to
find the mean and variance of the binomial distribution.

E(X) :ixe ——ixe o bx
x=0

o0

=20e” x(x ! -3’ (x !

x=1 x=1
Let u =x-1 (or x = u + 1), and change the index of the summation from x to u. The result is

E(X) ze b bu+1 z b bu

As was shown earller, the summatlon on the right side equals 1. Therefore,
E(X)=b
which completes the proof.

To find the variance, we first find E(X(X-1))

o P00 ) -b_____jil_____
EXX-D) =2 xx -D)e™ =D xx-De o
= b*
XX =2 5,

Let u = x-2 in the above summation , or x = u + 2, then

E(X(X-1)) = Ze o0 _ Z bﬁ—b2

! =0
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But, E(X(X =1)) = E(X?)-E(X)

Or, E(X?)=E(X(X -1)+E(X)

The variance of X can, therefore, be obtained as
o =E(X?) - p = E(X(X ~1)+E(X) - 4}
oi =b*+b-b*=b

- Poisson Process:
Consider a counting process in which events occur at a rate of (A) occurrence per unit time.
Let X(t) be the number of occurrences recorded in the interval (0, t), we define the Poisson
process by the following assumptions:

1- X(0) =0, i.e., we begin the counting at time t = 0.

2- For non-overlapping time intervals (0, t;) , (t2, t3), the number of occurrences {X(t1) — X(0)}
and {X(t3) — X(t,)} are independent.

3- The probability distribution of the number of occurrences in any time interval depends only on
the length of that interval.

4- The probability of an occurrence in a small time interval (At) is approximately (A At).

X(to) X(t1) X(t2) X(ts)

v

t=0 t t ts
Using the above assumptions, one can show that the probability of exactly (x) occurrences in
any time interval of length (T) follows the Poisson distribution and,

P(X:x):e'“@ ; x=0,1,2,3,.........
x!
- Theorem:
Let (b) be a fixed number and (n) any arbitrary positive integer. For each nonnegative integer (x):
n X
Lim(xj P L-p)"* =e™® b—l . where p=b/n
n—oo X_

EXAMPLE (3-21):
Messages arrive to a computer server according to a Poisson distribution with a mean rate
of 10 messages/hour.

a- What is the probability that 3 messages will arrive in one hour.
b- What is the probability that 6 messages will arrive in 30 minutes.

SOLUTION:
a- A =10 messages/hour =» T =1 hour

P(X:x):e-“”l&:e“@  x=0,1,2,3, e,
X! X!

P(X=3) =e'1°@

3!
b- A =10 messages/hour =>» T =0.5 hour
1
10k (0x2)* x
px=x)ze 22 _esO g a3
X! X!
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5 (5)°
P(X = 6) =€ F

EXAMPLE (3-22):
The number of cracks in a section of a highway that are significant enough to require repair is
assumed to follow a Poisson distribution with a mean of two cracks per mile.

a- What is the probability that there are no cracks in 5 miles of highway?
b- What is the probability that at least one crack requires repair in ¥ miles of highway?
c- What is the probability that at least one crack in 5 miles of highway?

SOLUTION:
a- A =2 cracks/mile = T =5miles

p(X = x) e (2 _ 410 A0

; x=0,1,2,3,.........
X! X!
P(X=0)=¢e™
b- A =2 cracks/mile = T =5miles
1
) Xl (ZX*)X X -1
pX=x)—e 22 _ea @ & 23
X! X! X!
© -1
P(X>1)=Y " =[1-P(X=0)]=1-¢"
x1 Xt
c- A = 2 cracks/mile = T =5miles
P(X:x):e'zx"’&:e“@ 0 x=0,1,2,3,.........
X! X!
© -10 X
P(le)=Zﬂ:[1-P(X:0)]=1-e'10
Xx=1

EXAMPLE (3-23):
Given 1000 transmitted bits, find the probability that exactly 10 will be in error. Assume that

the bit error probability isi.
365

SOLUTION:
X: random variable representing number of bits in error.

Exact solution:

P(biterror):?,—(l55 ; Number of trials (n) = 1000

Required number of bits in error (k) = 10

1000 10 990
P(leo)z[ﬂj<p)k(1—p)”'k { o j(3—é5j (%j

Approximate solution:

P(X=x)=e'bb— ; b=np=1000xi:@
x! 365 365
blO

P(X=10)=e® —

10!

Exercise:
Perform the computation and compare the difference
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Common Continuous Random Variables:

Exponential Distribution:
Definition:

It is said that a random variable (X) has an exponential distribution with a parameter A (A > 0)
if (X) has a continuous distribution for which the pdf fx(x) is given as:

fx(x)zke'kX : x>0
The cumulative distribution function is:
F,(x)=1-e™ : x>0
4 x(x) 4 Fx(x)

> X > X

The exponential distribution is often used in a practical problem to represent the distribution of
the time that elapses before the occurrence of some event. It has been used to represent the
such periods of time as the period for which a machine or an electronic component will
operate without breaking down, the period required to take care of a customer at some service
facility, and the period between the arrivals of two successive customers at a facility.

If the event being considered occurs in accordance with a Poisson process, then both the
waiting time until an event will occur and the period of time between any two successive
events will have exponential distribution.

Occurrence of events
R N )

Y Y
X X

1 »
T »

Time

Theorem:

If the random variable (X) has an exponential distribution with parameter (), then:
¥

me = E(X)= gxle dx = Il and
0

¥
E(XX?) = yxTe dx =

0

s2 = E(x*)-E*(x) =

I 2

I 2

Exercise
The number of telephone calls that arrive at a certain office is modeled by a Poisson random
variable. Assume that on the average there are five calls per hour.
a. What is the average (mean) time between phone calls?
b. What is the probability that at least 30 minutes will pass without receiving any
phone call?
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c. What is the probability that there are exactly three calls in an observation interval
of two consecutive hours?

d. What is the probability that there is exactly one call in the first hour and exactly two
calls in the second hour of a two-hour observation interval?

EXAMPLE (3-24):
Suppose that the depth of water, measured in meters, behind a dam is described by an
exponential random variable with pdf:
1 X
—— el¥% x>0
fy () =413.5
0 0.W

There is an emergency overflow at the top of the dam that prevents the depth from exceeding
40.6 m. There is a pipe placed 32.0 m below the overflow that feeds water to a hydroelectric
generator (turbine).

a- What is the probability that water is wasted though emergency overflow?

b- What is the probability that water will be too low to produce power?

c- Given that water is not wasted in overflow, what is the probability that the generator will
have water to derive it?

SOLUTION:

a- P(water wasted through emergency) = P(X>40.6m) = j % eldsgx =g
40.6
b- P(water too low to produce power) = P(x < 8.6 m) :(1-e*°'637): 0.47

c- P(generator has water to derive it / water is not wasted) = P(x > 8.6 / x < 40.6)
40.6 - X

_[ ——e135qx

_ P(x>8.6 N x<40.6) P(8.6 <x<40.6) _ 13.5

— . = 0.504
P(x < 40.6) P(x < 40.6) f
0

135 673

L
135

Rayleigh Distribution:
The Rayleigh density and distribution functions are:

f, (X) = gxe“’b : x>0

Fe(X)=I-e" ; x>0
The Rayleigh pdf describes the envelope of white noise when passed through a band pass filter.
It is used in the analysis of errors in various measurement systems.

Theorem:

« =E(X)= %b and o2 =Var(X) = b(4 - =)

Il1. Cauchy Random Variable:

This random variable has:
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fL)=—27 Fx(x)=1+3tan-{5j
X +a 2 7 a

Exercise: Prove that the mean and variance of the Rayleigh distribution are as given in the

theorem above.

Exercise: Find the mode and the median of the Rayleigh distribution

Exercise: Find the mean and variance of the Cauchy distribution.
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Gaussian (Normal) Distribution:
Definition:
A random variable (X) with pdf:

_(X'Hx)2
f 1 26%
()= e Ceo<X <00

J2nol

has a normal distribution with parameters (u, ) and (c%) where —oo<x <o and o5 >0.
Furthermore:
EX)=px ; Var(x)=oy

Infinite number of normal distributions can be formed by different combination of parameters.

A A A A A

X

v

v
v

M # Mo M1 = Mo 1 # H2
G1 =0y C1£ 0y C1# 0y

Definition:

A normal random variable with mean zero and variance one is called a standard normal
random variable. A standard normal random variable is denoted as Z.

t ) 4 12(3)

-
X
+
o)
X
3 4
o

Hx =Ox Uy

4
Definition:

The function ®(z) = P{Z < z} is used to denote the cumulative distribution function of a
standard normal random variable:

: 4
d(z) = e 2 du
2 J;\/Zn
This function is tabulated for z-> 0
For <0 ; D(z)=1-D(-3)
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» X - Scale
Hy —40y Hy =30y Hy =20y Py =0y Hy My t0yx Py +20y py +30y By +40y
> z- Scale
-4 3 -2 -1 0 1 2 3 4
f2(%)
0 1 ¥ a b
Dd(1) ®D(b) - d(a)
1 -1
Area=1-®(1) D(-1)=1-d(1)

Area=®d(1) - d(-1)
=®(1)-[1-21)]
=20(1)-1
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Cumulative Distribution Function:

*(X'Hx)z
P(X < %) = Fy(x) = j 2% dx
0] 2 ncx
- dx
Letu:(mj > du=— 2 dx=o,du
O x G x
X*lle 2
Fo(X) = e 2o, du
'[ JZTCGX .
D(z) = J'\/_ e? du
(3) =®[—Zc;“xj
X

Therefore, we conclude that:

1- P(X < xo) = cp(xo '“Xj

G x

2- P(Xo < X < Xq) = q)(w}_ @(mj
O x O x

EXAMPLE (3-25):

Suppose the current measurements in a strip of wire are assumed to follow a normal
distribution with a mean of 10 mA and variance 4 (mA). What is the probability that
a measurement will exceed 13 mA?

SOLUTION:
X = current in mA

ZZ{x-uxJz(x;oj
P(X>13) = P{ [X Zloj > (13;0j =1.5}

P(X>13)=P{Z>1.5}=1—d(5) = From tables:
=1-0.93319 = 0.06681

A (%) e

Inr— /
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EXAMPLE (3-26):

The diameter of a shaft in an optical storage drive is normally distributed with mean 0.25
inch and standard deviation of 0.0005 inch. The specifications on the shaft are 0.25 + 0.0015
inch. What proportion of shafts conforms to specifications? - 59

(X

SOLUTION: /
P(0.2485 < X < 0.2515)

0.2485 - 0.2500 0.2515-0.2500 J K
i Jezl )

0.0005 0.0005 02485 025 0.2515
=P{~3<Z<3} %
= 0(3)- D(-3) /
=2®3)-1 => From tables:
= d(3) - O(-3) = (2 x 0.99865) — 1 = 0.9973 / \
-3 0 3

EXAMPLE (3-27):

Assume that the height of clouds above the ground at some location is a Gaussian random
variable (X) with mean 1830 m and standard deviation 460 m. find the probability that clouds
will be higher than 2750 m.

SOLUTION:

fx(X) A

P(X > 2750) =1— P(X < 2750)

:1_P{ZS(275O—18SOJ} — 1

o 09 bocooocessog

460 ?O 2750
—1-P(Z<2.0) e
=1-®(2.0) = From tables:
=1-0.9772
0 2.0 ¥

P(X > 2750) = 0.0228

Exercise
The tensile strength of paper is modeled by a normal distribution with a mean of 35 pounds

per square inch and a standard deviation of 2 pounds per square inch.
a. If the specifications require the tensile strength to exceed 33 Ib/in? , what is the
probability that a given sample will pass the specification test?
b. If 10 samples undergo the specification test, what is the probability that at least 9
will pass the test?
c. If 20 samples undergo the test, what is the expected number of samples that pass
the test?

Exercise
The rainfall over Ramallah district follows the normal distribution with a mean of 600 mm and

a standard deviation of 80 mm. The rainfall is distributed over 500 km? area. Find:
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1. The probability of obtaining a rainwater volume less than 206 MCM (MCM = Million
Cubic Meter)

2. Find the mean and the standard deviation of the volume (V) of rainfall in MCM.

3. Flooding condition will be considered if the rainfall is higher than 900 mm.
Find the probability of flooding for any given year.

- Remark:
The area under the Gaussian curve within (k) standard deviations of the mean is given in the

following table:

Area
P(uy —koy <X<pu, +koy)

0.6826
0.9544
0.9973

0.99994 4

k

A T WIN| -

Total probability outside an interval of 4 standard
deviations on each side of the mean is only 0.00006

= Normal Approximation of the Binomial and Poisson Distribution:

- Theorem: De-Moiver-Laplace

For large (n) the binomial distribution

~(x-np)?
n 1 — .
L-—p)"* ~———¢ 2"P4 ~ : asymptotically equal
@p 1-p) TTIT ( ymp y equal)

Which is a normal distribution with mean (n p) and variance (n p q). Therefore, if (X) is
X-np
npq

The theorem gives better results when (np >5)and (np g >5)
b

P@<X<b)= ZC‘(] pP*@A-p)"* ~ OP)-D(at) Where:

X=a

a binomial r.v, then z :( ) is approximately a standard normal r.v.

(i) {12

EXAMPLE (3-28):

Consider a binomial experiment with n = 1000 and p = 0.2. if X is the number of successes,
find the probability that X < 240.

SOLUTION:
2 X 1000 X 1000- x
Exact solution: P(X <240) = >’ } (0.2)(1-0.2)
x=0
Applying the Demoiver-Laplace theorem:

240 —1000x 0.2
1000 % 0.2 % 0.8

P(X < 240) = cp( j = ©(3.162) = 0.999216
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Theorem:
If (X) is a Poisson r.v with E(X) = b and Var(X) = b, then: 7 :()ir bj
b
is approximately a standard normal r.v. The approximation is good for (b > 5).
b 1 &by
eP— > ——e 2
X! v2=mh

EXAMPLE (3-29):

Assume the number of ashestos particles in a cm® of dust follow a Poisson distribution with
a mean of 1000. If a cm® of dust is analyzed, what is the probability that less than 950
particles are found in 1 cm®?

SOLUTION:

950 X
Exact solution: P(X <950) = > e (1000)

s X!
950 —1000

Approximate:  P(X <950) = P{Z <
~/1000

} =P{Z<-1.58}=0.057

Transformation of Random Variables:

Let (X) be a random variable with a pdf fx(x). If Y = g(X) is a function of (X), then (Y) is
a random variable. Its pdf is to be determined. The function g(X) is a single valued function of
its argument.

I. Discrete Case:

EXAMPLE (3-30):

Let (X) be a binomial r.v with parameters (n = 3) and (p = 0.75). Let Y =g(x) =2X + 3
P(Y =y) =P(X =X)

SOLUTION:
The table below shows the (x) and (y) values and their probabilities.
n
P(X:X){Jpxa—mn_x ~ & Y=9(0) y
0,1,2,3) (3,5,7,9)
y=2x+3
10 +
8 /
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X y P(X=Xx) P(Y =y)
0 3 1-p)y’ (1-p)y’

1 5 | 3p(-p)° |[3p(-p)
2 7 | 3p°(l-p) |3p°(1-p)
3 9 p° p°

EXAMPLE (3-31):
Let (X) has the distribution P{X = x} = % ; x=-3,-2,-1,0,1,2
Define Y = g(x) = X2 Find the pdf of the random variable Y.
SOLUTION: S =248

X y P(X=x) | P(Y=Y) | | | | | |

> X

7 9 1/6 1/6 3 > 1 0 1 2

-2 4 1/6 1/6

1 1 1/6 1/6 Probability Density Function fx(x)

0 0 1/6 1/6 P(Y=1) P(Y=4)

1 1 1/6 1/6

2 4 1/6 1/6 P(Y=0) P(Y=9)
The distribution of Y is:
P(Y =0)=1/6 0 1 4 9 y
P(Y=1)=2/6 - : :
P(Y = 4) = 2/6 Probability Density Function fv(y)
P(Y=9)=1/6

I1. Continuous Case:

Let Y = g(X) be a monotonically increasing or decreasing function of (x).

P(x <X <X+ Ax) =P{y(x) <Y < y(X + AX)} Y 4
y + Ay
PX<X<Xx+Ax)=P{y<Y <y+Ay} Y(X+AX) —
fx(x) Ax = fy(y) Ay
y(x) S

Ax o (x)  f(X)
fo(y)=fy(X)—= =

Ay |Ay| |dy

AX dx
yi<y<y: >
X X+AX

EXAMPLE (3-32):

Let (X) be a Gaussian r.v with mean (0) variance (1).
Let Y = X2 Find fy(y)
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SOLUTION:
fx (X) dy
f =2X 0<y<ow ; |-Z=2
Y(y) |dy/dX| y 0 dX X
2 1
f =— e 2 , X=
Y( ) 2X \/57; y
1 1 7
f,(y)=—=—=e?
Yy /271
1 Y
f\’(y):: \/é—?;'e 2 ’ y,2:0
7T

EXAMPLE (3-33):
Let (X) be a uniform r.v in the interval (-1, 4). If Y = X2, Find fy(y)
SOLUTION:

f(X) _2xV5_ 1
dy/dx| 2x 5.y

For (1< X<1): = f,(y)=2

f (x) 1/5 1
For 1<X<4): = f =X e A S y
( ) Y(y) |dy/dX| 2X 10\/9 A
16 ...............................
1
—— O<y<1 :
5y
1
f =q—— 1<y<16
. : : > X
0 Otherwise =il 1 4
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EXAMPLE (3-32):

-AX
Let (X) be ar.v with the exponential pdf: f, (x) = {ﬂ e” x>0
0 x<0
Let Y = 2X + 3. Find fy(y) and the region over which it is defined.
SOLUTION:
fx (X) dy
f - _X DY
i |dy/dx| dx
g [Y-3
f (X) y-3 X 2
v ) 2 2 v(y) >
e )
ieﬂ(z) y_3>0 y) 1Y73J 5
fY(y): 2 _23 > fY(y): 2—9 y >
0 yT <0 0 y<3

1
NOTE: P(3<Y <5)=P0<X<1)=[le™ dx=1-e”
0

EXAMPLE (3-33):

Let (X) be a Gaussian r.v with mean (., ) variance (c%)
Let (Y) =aX + b be any r.v. Find fy(y)

SOLUTION:
d —-b
Y=aX+h => —y:a andx:y—
dx a
(X-11x)? 2’ (y-b-apy)
—(X-px X ~(y-b-apx)?
1 1 20} 1 P 1 Zony
fy(y) == e "™ = e " = e

a /2ol V271 (acy)? J2m(acy)?
but from previous results we have: p, =ap, +b and o2 =a’ o hence,

~(y—ny)?

1 T2
f(y)=———e >

2T Gy

Therefore, Y is Gaussian with mean (u, =ap, +b) and variance (c? = azcsf(

SPECIAL CASE: The Standard Normal
If (X) is a Gaussian r.v with mean (., ) variance (c%), then:

therv z =(ﬂJ is a Gaussian r.v with mean (p, = 0) variance (c5 = 1).
G x

That is (Z) is a standard normal random variable.
GENERAL RESULT:

A linear transformation of a Gaussian random variable is also Gaussian.
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In certain experiments we may be interested in observing several quantities as they occur, such
as carbon content (X) and hardness () of steel; input (X) to a system and output (Y) at a
given time too.

If we observe two quantities (X) and (), each trial gives a pair of values X = x and Y =,
(x,y) which represents a point (X,y) in the x-y plane.

The joint cumulative distribution function of two r.v X and Y is defined as:

Fxv(xy) A P{X <x,Y <y} ' Y%
Event (A) ={X <
vent (A) = {X < x} (xy)
Event (B) ={Y < vy}
> X
A B
S ANB

. Discrete Two Dimensional Distribution:

A random variable (x,y) and its distribution are called discrete if (x,y) can assume only
countably finite or at most countably infinite pairs of values (X1,y1), (X2,¥2), -.....

The joint probability mass function of (X) and () is:
Pij = P{X =i, Y =y;} such that

Fxy(X.y) = Z Z P;

Xi <X Y;<y

and 2.2 Pi=1
-

. Continuous Two Dimensional Distribution:

A random variable (x,y) and its distribution are called continuous if Fxy(X,y) can be given by:

Yy X
Frv 00 Y)= [ | fiv (x,¥) dx dy

where fxy(X,y) is the joint probability density function (f being continuous and nonnegative)
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Properties of the joint pdf: y;‘_’_’_
1 fuy(xy) > 0 %
2- TTfXY(x,y)dxdy:l vy [+ %|

o - ! N )
3- P(xl<XSx2,yl<Y§y2):jijY(x,y)dxdy X X

and in general: "

P(x,yeR) =[] fu (x,y) dxdy

R > X

Marginal Distributions of a Discrete Distribution:
P(X =x;) =P(X =X, Y arbitrary)
=Y P(X=x;,Y=Y))
y

This is the probability that (X) may assume a value (x), while (Y) may assume any value

which we ignore.

Likewise:
P(Y =y) =D P(X=x,,Y=y))

Marginal Distributions of a Continuous Distribution:

7

For a continuous distribution we have:

Fx(®) =P(X<x) = .X[(T fry (X,Y) dYJdX

-0\ —0

d
but f, (X) =—F, (X
x (%) ™ x (¥
> fx(x)szXY(x,y)dy ; Marginal pdf
> fY(y):IfXY(x,y)dx ; Marginal pdf

Independence of Random Variable:

Theorem:

<

7

7
7

X

Region such that:

Two random variables (X) and (Y) are said to be independent if:

Fxy(X,y) = Fx(X) Fy(y) holds for all (x,y), or equivalently:

fxv(X,y) = fx(x) fv(y)
Proof:

Fxy(X,y) =P{X < x,Y <y}
Let: A:event{X < x}
B:event {Y < vy}

A and B are independent if:
P(A N B) = P(A) P(B)
PX <X, Y <Y)=P(X < X)P(Y <)
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Conditional Densities:

Let (X) and () be discrete random variables. The conditional probability density function of
(Y) given (X = x), that is the probability that () takes on the value (y) given that (X = x), is

given by:
P(X=x,Y=Yy)
vix(Y)=P(Y =y ) P(X=x)
If (X) and (Y) are continuous, then the conditional pdf of (YY) given (X = x) is given by:
fv (X,Y)
f _ X, Y
vix(Y) —fx (x)

EXAMPLE (4-1):

Let (X) and (Y) be continuous random variables with joint pdf:

fx,Y(X,y)=%(6—X—y) © 0<x<2,2<y<4

y
1- Find fx(x) and fy(y). 4
2- Find fy/x(y).
3- Find P(2<y<3) 3
4- Find P(2<y<3/ x=1)
2
SOLUTION:
1
¢ X
1- ()= [ fy (. y) dy - —
2 0 | 1 2
t1 1 _
:I—(6—x—y)dy=—(6—2x) ; 0<x<2
)8 8
)= [ f ()X = [L6-x-y)ix=2(6-y) ; 2<y <4
J '8 4
frv (X,Y)
o f _ xxy W Y)
vix () £ ()
L6-x-y)
=5 =) ; 0<x<2 , 2<y<4
“e-2x) (62
8
8 31 5
3- P(2<Y<3)= !fv(wdy:jz(s-y)dy:g

2

4- fY,x(y/x=1):@- 2<y<4

3
P(2<Y<3/X=1) = J‘S%‘rydyzg

2

Exercise:

1- Find P(2<Y<3/0<X<1)
2- Find py, py, 64, and o2
3- Are X and Y independent?
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EXAMPLE (4-2):

Suppose that the random variable (X) can take only the values (1, 2 , 3) and the random
variable () can take only the values (1, 2, 3, 4). The joint pdf is shown in the table.

1- Find fx(x) and fy(y).
2- Find P(X > 2)
3- Are (X) and (Y) independent.

SOLUTION:
1- P(X=1)=0.2 P(Y=1)=0.4
P(X=2)=06 P(Y =2)=0.2
P(X=3)=0.2 P(Y=3)=0.2
P(Y =4)=0.2
Y =1.0 Y =1.0

2- P(X >2)=P(X=2)+P(X=3)=0.6+02=0.8

3- Check all pairs (x,y) for:
PX=x,Y=y) = P(X=x) P(Y=y)

P(X=1,Y=1)=0.1# (0.2x0.4)=0.08 => we do not continue

= X and Y are not independent

Y
X 1 2 3 4
1 0.1 0 0.1 0
2 0.3 0 0.1 0.2
3 0 0.2 0 0
A
fur (X,Y)
0.3
0.2

Exercise:

—Find p, and 6%
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EXAMPLE (4-3):
Let (X) and () have the joint pdf:

kxy , 0<x<l1, 0<y<l,
f —
xv (%Y) { 0 , otherwise 1
1

a- Find (k) so that fx(x) is a proper pdf. iz
b- Find P(X >05,y > 0.5) Z,&/é
c- Find fx(x) and fv(y) % // /
d- Are (X) and () independent. 05T Z 4
SOLUTION:

1 1 %S
a [ [fo(xy)dxdy=1 > kjy[jxdx dy =1 0,0) 0.5 1 g

59— 0 0

1 2|1

k ¢ ky
dy==[ydy=N¥_
] y Zly y

1 X2

K|y —

![z
1 1

b- P(X>05,y>0.5)= j j4xydxdy

0.50.5
J20
2 0.5 2

- f (%) =I fuy (X, y) dy

N|x

-> .'.Ezl = k=4
2 2 4

0 0

1

0.5

J =(1-0.25) x (1-0.25) =0.75x 0.75 = 0.5625

2

1
fx(x)=f4xydy = 4xy7 =2X
0

2

1
X
fy(y)=[4xydx = 4y—| =2y
0

Since fxy(X,y) = fx(X) fy(y)
= 4xy = (2x)(2y) = (X)and (Y) are independent.

EXAMPLE (4-5):
For example (4-3), find P(X > Y). Ty
SOLUTION: 1

P(Y<X):Ij4xydxdy =_l[ I4xydydx :.l[ j4xydxdy y =X
R 00 0y \
1 y2
£4X(?
X4

P(Y <X)=2| —
(Y <X)=2| %

X

1 2 1
dx :j4xx—dx:2I x3 dx
0 2 0

> X
_1 1
2

0

1

0
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EXAMPLE (4-4):

Two random variables (X) and (Y) have the joint pdf:

5. Ty
, O<y<x<?2
xy(x y)_ 16 y y 2

0 . otherwise

a- Verify that fxy(X,y) is a valid pfd.

b- Find the marginal density functions of X and .
c- Are Xand Y statistically independent?

d- Find P{X<1}, P{Y<0.5}, P{XY<1}

SOLUTION: Cx
2 X 5 2
— 2
- jijXY(x,y)dxdy = ”Ex y dy dx
2 2 2 |% 2 4 5|2
> Iydy dx= > [x2| L |dx=> (X dx=2xin X MRV
164 167 | 2|, 163 2 16 2 5| 16 2 5
5 y 5
b- f, (X foo (X, y)dy & f, () =|-—=x>ydy = —x? =—x*
()va(y)y () !6 v = 15X 7 "3
ix4 0<x<2 25 5 x°|°
f,(x)=432" > check _[—x“dx:—— =1 = OK
: 32 32 2
0 , otherwise 0 0
z 2 5 5 x}|° 5
foy)=[f Oy dx D f (y)=[=x2ydx = —y=| =—y(8-y°
) I v (6,Y) ) {16 V=165, 25V EY)
2
8- O<y<?2 S
f, () ={8”¢ ). O<y -)j—(8y yydy=—|ay?-¥| -1 = ok
. 48 48 5
0 , otherwise v 0
c- Since fxv(x,y) # fx(X) fy(y) = (X) and (Y) are not statistically independent.
I t5 5x°| _1
d- P{X<1}= [f, () dx=[—=x"*d == =0.03125
X<ty !x” I 32 5| 22
0.5 0.5
P{Y<05} = [f,(y)dy j 5 V@Y ) dy
0 o YA
5 ‘" _ 105
=2 lgy2- Y == _01025
48 4 1024 Sl
0
1 _1
PXY<L}=P{Y<} Y=
1. R
PLY< }= ﬂ oy (X, y) dx dy
l \
L lX52do|2X520|o| X
P{Y<—=}=||—=X X+ ||-—=X X >
{r<} Mls y dy !!16 y dy > X

=1/32 + 5/32 = 6/32
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Addition of Means and Variances:

Review: (Basic operations on a single random variable)

- E(X) = Tx f (X) dx

- ElgX)}= j o(X) f, () dx

- E{5,00+0,00) = Elg,00}+ E{g, 09}
-IfY=aX+b
E(Y)=aE(X)+b => u,=ap, +b > o} =a’c
Definition:
The expected value of a function g(x,y) of two random variables (X) and (Y) is:
E{g(x,y)} = Z Zg(xi Y;))P(X=X;,Y=Y,;) ; XandY are discrete

Xi Y

= j JQ(X Y) fxy (X, y) dx dy ; X and Y are continuous

Since summation and integration are linear processes, we have:
E{a gi(xy) + b g2(x,y)} = a E{gi(x,y)} + b E{g2(x,y)}

Theorem: Addition of Means

] The mean or expected value of a sum of random variables is the sum of the expectations.

Theorem: Multiplication of Means

\ The expected value of the product of independent r.v equals the product of the expected values.

E(x1 Xz ....... Xn) = E(X1) E(X2) ....... E(xn)

If (X) and (Y) are independent random variables, then fxy(X,y) = fx(X) fv(y), so:
E(XY) = nyfXY(x y) dx dy = jxf (x) dx jyf (y)dy = E(X) E(Y)

=00 —00

And in general, if (X) and (Y) are mdependent then
E{9:(X) 92(Y)} = E{9:1(X)} E{92(Y)}

Theorem: Addition of Variances

Definition:
The correlation coefficient between two random variables (X) and (Y) is:

E{(X )Y -py )} My
Ox Oy Ox Oy
where . is called the covariance and p, is bounded between —1<p., <1
when p,, =0, (X) and (Y) are said to be uncorrelated.
when p,, = %1, (X) and () are said to be fully correlated.

XY
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Theorem:
Let Y = a1 X1 + axXs,, then

Gi =a12(sf<1 +a§($f(2 Jr2a1a2csx1(5><sz1><2
Proof:
63( = E{(Y'HY)Z}:E{(a1X1 +a,X%, - My, 'azuxz)z}
=E{[a, (X, '“xl)+a2(xz "My, 1%}
= E{alz X, 'Mxl)z}"‘ E{ag(xz “Hy, )3+ 2a, a, E{(X, 'Mxl)(xz "Wy, )}
zafcil +a§(’§<2 +22,8, Hyy
Hxy
x Ov
Theorem: Multiplication of Means

If (X) and () are independent random variables, then they are uncorrelated.
Proof:

Ry = E{(X- 1, )(Y -1y )}
=E{XY}-puy E{OXC}- iy XY + ey
=E{XY}- E{X}E{Y}
But since (X) and (Y) are independent, then E{XY}=E{X}E{Y}

since pyy, =

. 2 _ a2 2 2 2
. Oy =a;0y +a,0y + 2 8,8,0 Ox,Pxy

P U =0 D pyy = P __g

x Oy
This result asserts that if X and Y are independent then they are uncorrelated (r,, = 0).
However, the converse is not necessarily true. That is, if r,, = 0, then X and Y are nor

necessarily independent. The only exception is when X and Y are Gaussian. In this case,
r., = 0 impliedthat X and Y are independent.

Theorem:
Let Y =a;X; + a>X,, and (X) and () are independent random variables, then

2 .2 2 2 2
Oy =8;0y +a8,0%

This result follows immediately from the above two theorems.

| The sum of independent random variables equals the sum of the variances of these variables.

= Functions of Random Variables:

Let (X) and () be random variables with a joint pdf fxv(x,y) and let g(x,y) be any continuous
function that is defined for all (x,y). then:

Z =g(x,y) is a random variable. The objective is to find fz( 2).
When (X) and () are discrete random variables, we may obtain the probability mass function
P{Z = z} by summing all probabilities for which g(x,y) equals the value of (z) considered,
thus:
PZ=%)=3 > P(X=x;,Y=y))

gxy)=3
In the case of continuous random variables (X) and (Y) we find Fz(3) first:

FAp=P{Z< 8= [[f(xy)dxdy

gxy)=<gz

dF
Then we find: fz(2) = #
z
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- Theorem:

Let Z= X+ Y and let (X) and (Y) be independent random variables, then;
f,(3)=[ fx (%) fy (3 -x) dx

Proof:
F,(z)=P(Z<%)=P(X+Y<%)
F,(5) =P(Y <z -X) = [[ fr (x,y) dxdy

0 F—X
= [ [ & (xy)dxdy
since (X) and (YY) be independent random variables, then

fxv(x,y) = fx(x) fy(y), so:

o F—X

F) =] [ 100 fy (y)dxdy

w(F—X
FG3)= | [ [ ) dy} fy (x) dx

=00 —00

(30 = |t O F, (3 —x) o

dsz (%)

fo(5) = dz

(3= [ £ Ty (3 ox

The Convolution Integral

7//
o

NN
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EXAMPLE (4-6):

Consider the joint pdf shown in the table (considered before in example 4-1).
LetZ=X+Y.

1- Find the probability mass function of (Z), P{Z = z}.

2- Find P(X=Y).

3- Find E{XY}
X Y 1 2 3 4
1 0.1 0 0.1 0
2 0.3 0 0.1 0.2
3 0 0.2 0 0
SOLUTION:
1- Possible values of (Z) and their probabilities are shown as follows:
Z P(Z= 32
2 PX=1,Y=1)=0.1
3 PX=1,Y=2)+P(X=2,Y=1)=0+03=03
4 PX=1,Y=3)+P(X=3,Y=1)+P(X=2,Y=2)=01+0+0=0.1
5 PX=1,Y=4)+P(X=2,Y=3)+P(X=3,Y=2)=0+01+02=03
6 P(X=2,Y=4)+P(X=3,Y=3)=02+0=0.2
7 P(X=3,Y=4)=0

2- P(Y = X) = summation of probabilities over all values for which x =y.
=P(X=1, Y=1) + P(X=2, Y=2) + P(X=3, Y=3)

=01+0+0=0.1
3- E{XY} =D, D XY, P(X=x;,Y=y))
Xi Yj

= (1)(1) P(X=1, Y=1) + (1)(3) P(X=1, Y=3) + (2)(1) P(X=2, Y=1)
+(2)(3) P(X=2, Y=3) + (2)(4) P(X=2, Y=4) + (3)(2) P(X=3, Y=2)

=(1)(1) (0.1) + (1)(3) (0.3) + (2)(1) (0.3)
+(2)(3) (0.1) + (2)(4) (0.2) + (3)(2) (0.2)

E{XY} =5

Exercise:
LetZ=|X-Y]
- Find the pmfof Z: P(Z = 2)
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EXAMPLE (4-7):

Let (X) and () be two independent exponential random variables, such that:

f (X)= ae ™, x>0 )= ib e y> 0 () 4
71 0, otherwise ' =1 0 . otherwise \
Let Z =X+ Y. Find fz(3). > X
e \\
SOLUTION:
¥ z > X
f,@)= O fx(X) f,z -x)dx= gae®™. b e dx Fy(-X)
_¥ 0
f,(z)= ya e™. b e dx = abe™y e®™ " dx, X
0 0
ab (a-
— e z 1_ e(a b)z f g
f,(2) = ( i b) ( ) v(%-X) /l
A
f,(2) = GG >X
’ ( - b) ¥
EXAMPLE (4-8):
Let (X) and (YY) be two identical and independent random variables, such that:
1 1
— , D0O<x<2 - , 0O<y<?2
f(0)=12 L f (=12 / £00 4
0 , otherwise 0 , otherwise
Let Z = X + Y. Find fz(3). 2
> X
SOLUTION: 2
E— fy(x)
Z=X+Y > 0< gz<4
- For (3<0) > f2(%)=0 5 > X
- For (0< <2) fy(-x)
f,(3)=[ fx® fy (3 -¥) dx .
T ? ;
f,(3)= I—x—dx—g/ fu(3-%)
o 4 15
- For (g/— 2) | >X
2 2+z 1l %
f,(z)= j_x_ dx_g =%
0 fz(%)
- For(2< 5/< 4) A
x° 1 1
f(z)= [ =xZdx =2 ==|@-(2+z)|==l4-2] ., |-
(%)= ZL x .., Je-2+zl=2l4-5] i
11 . ' ¥
-)Totalarea—§x4x5=1-)lt|sapdf 0 2
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EXAMPLE (4-9):

Let (X) and () be two uniformly distributed and independent random variables, such that:

1 1 f
=, 0<x<2 =, 0<y<4 x(X) A
fe(¥) =12 L ()=14 y
0 , otherwise 0 , otherwise
Let Z =X+ Y. Find fz(%). > > X
SOLUTION: fv(x)
- For (z<0) > fx(z)=0
CFor(0<z<2) > f,( )—Tixl dx =1 s
% 2\% 127 85/ fy(-Xx)
2
11 1 1
- For (2 4) = f =|=x= dx==x2== S
(2<3<4) > f()=[5xG dx=gx2=y | >X
- For (4<% <6) fv(%-x)
2 2
11 1 1
S | Sren S SEe=) >X
-4+ -4+z fZ( 5/) -4 + z %
1 A
gg O<z <2

1 U4 f-----—2 |
Lg)= 5 2<z< PN
] ) ?

%(6-5/) 4<2/<6

EXAMPLE (4-10):
Let (X) and () be two identical and independent random variables, such that:

f(x) = ae™ , x>0 L (y) = ae™ , y>0 fx(X) 4
X 0 , otherwise ' G 0 , otherwise \
Let Z =X+ Y. Find fz(%). > X
SOLUTION: fv(x)
i T (5 X
i = f, (X)) f,(z-x)dx=|ae™. ae ™™ dx >
(%) j x () fy (3-%) J .
5 _
fz(gx):!a e X, e M (ix .
&
f,(z)=a’e™¥ [dxp f,(3)=a’ze"? f(3-x)
0
Exercise: Find the pdf of Z = X, + X, + X, when — > X

the variables are independent and identically distributed exponential
Random variables having the above given pdf.
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Transformation of Multiple Random Variables

Let X; and X, be two random variables with a joint pdf f,i.; (*1, %)
and let ¥;=g,(Xy, X5) , ¥2= g4(X4, X) be two new random variables , where we assume that

g4 and g, have continuous first partial derivatives for all x, and x,.
For a one-to-one mapping, we have

P{x;< Xi<xyt Axy, 238 XpSxp+ Axp b =PI Hi<w+ Ay, < H<wm+t Ay}

frazz (1, 22)d2xg dxy = fiq 40 (W1, ¥2)dyy dy,

Xy X -
f:;,-i_,yg (}?1 ,}?2) = Jrixz (%1 %5) _ Frixz (1 .%2)
|d;l,?1 dJ"z ."rdxj_ d.'l-'zl Ul

The denominator is what is called the Jacobean. It is the ratio of the differential area in the

¥; — ¥, plane to the differential area in the Xy — X5 plane.

A A
de, dxg
= = : E =
VI By Bym| 0
de, dxg

Therefore, the joint pdf of ¥; and ¥, can be determind as

Frua O ,,,)_M
vilx2 \F1.,4) —

|7l
Note that :
dyy dyy
_ Gy Gy |dxy dxo
J= | a |_ v dy
xy Oxy -z Iz
dx;  dxg

which can also be re-written in the equivalent form:

1 1
~ Bxydxy,  |8%y By
lﬂ}‘i E'Jf‘zl 8¥1 ¥z
Bxp  dxg
8¥1 8¥z

The marginal pdf’s can be found as
for (yy) = .r:,c forgz V1, ¥2) d¥z
[y (}’:j = _rjcmf;,;l,yz (1, ¥2) dyy
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Example 1

Let X; and X, be two independent exponential R.V with pdf’s

_ (Ae s x =0

fra(a) = { 0 x, <0’
A e %2 x, =0
fra(x2) = { 0 X, <0

Define ¥; = X, + X,
Y, =X,/ X,

a. Find the joint pdf of ¥; and ¥;.
b. Find the marginal pdf’s f,; (¥1) and £z (2).
c. ArelY; and ¥; independent?

Solution
12e —Alx, +x,)

fx-_xz (xl’xﬂj = fx._ (xlj'fxz (.’Izj = {

0 a.w

The Jacobean can be calculated as:

dy; 9y
dxy, Baxg 1 1 -y 1
J= 3 3 = i _Ey= — = —
Yz ¥ s =2 x5 Ko
dxy, Baxg
2 _—A{xy+xs) 2
Therefore fo (e s) _Le T2
! Fag V718 —*1 1 X+ Xg
.r% 4]

Solving for x4 and x, in terms of ¥, and ¥,, we have

Py

Yy V- 47
xiz—”i"z , Xp= Y1
1+ 1+
¥4®
— xz _ (14932
f}'._‘,' (}Hr}rgj =J:|.'2€ ﬂ‘}?i.—z = H__zg Ayy _ fadya)®
= Xy +xg Vs
:12}: P R — 0=y <00
' (1+y2)? 0=y, <o
The marginal pdf’s are:
— ™ 42 —y, 2 a1
. LW = 3 L= . ﬂ
Fou00) = Jy Ayae™ ey = Ay, 6™ [y e
—_—
1
fy, (1) ={AEF1€_A""‘- 0=y <o
e 0 v, <0
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= ™ ;2 —Ayy —1 :—1 s —
fo02) = [ Bye™ msdyy = [y Aye ™y,

1

1

f.:!"'*_(}rij :{ ':1+}'-'.‘.ﬂ:'1

0=y, <=
¥, <0

Since fyoy e ¥2) = fy, (1) . £y, (32), then ¥; and ¥ are independent.

Example 2
Let X, and X, be two independent uniform R.V with a joint pdf

1 i0=x,=1,0=x
0 a.w

,=1

fx._xn (x1.%7) = {

Define ¥; = X, + X,
,=X - X

a. Find f, ,. (¥, ¥;) and the region over which it is defined.
b. Find £, (»1) and f,_(32).
c. Are¥, and ¥; independent?

Solution

_f.Xj_Xz{xi-'xZ:] _ 1 1 _ _
f;’-‘_}rz(}rl"}rzj_u—la \]_‘1 _ ‘_|_1_1|—2

1 .
f;.r'._yz [:}Fil}rﬂj :Efor Y1:¥2 € R

Where R is as shown below

Yz
X3
1 b
1 d ¢ 0.8
0.6
0.8 04
=
0.2
06 c'
R o, . . . . . . . . . ¥
a 02 04 06 08 1 12 14 16 18 2
02
04
0.4
02 o8
0.8
d
o T b -1 o
0 02 04 06 0.8 1 Xy
-1.2
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fr, (1) = .rf;_ % dy; O<y =1

1
=1 —(=m))=»m

fr 00 =[5 2 dy, =312~ 31) — (=2 + wy)]

2+,
1
=—(4-2y,)=2—¥w, 1<y, <2
_ {}’1 0=y =1
22—y, 1<y, <2
fyi(}’ij
1
0.3
06
04
0.2
] T T T T T T T T T
o 0.2 0.4 0.6 0.8 1 12 14 16 18 2 ¥y

_ 24y, 1
Fr ) =[ 7% 5 dyy —1<V¥, <0

:%(2"'}’2_[_}’2)]:1"‘}’2 —1<¥, <0

£y, (02) =f;_y‘% dy, = =[2—y, —y]=1l-v, 0<y, <1
_{1+3.:r2 —1<y,<0
“l1- v, o<y, <1

1<w<2
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fyz (v2)
—1I.2 I:I. —E.‘:.S —D:.E D:.4- —E.‘:.Q l o DI.Z Dl.d- DI.E DI.S ;_ };2
. 1 .
Clearly, since f,, (v1). £, (v2) # £y, (V1 ¥2) = 2 then ¥; and ¥, are not independent
Example 3
Let X, and X, be two zero —mean, unit variance independent Gaussian random variable. Define the

polar random variables R and & as

2

fro(r8)==()(re™ /2

R=yx2 42,2 f=tan 12
= x
Find fra(r,6) , fz(r) , fa(6)
Solution
It can be easily shown that:
xy=rcos@ X, =rsinf
ar ar
. _|8xy Bxg|
The Jacobian J = 90 a6 |7
dxy Odxg
ar a6
)= 1 _ 1 1
B |':mIS 8 —rsind| ™ lr(cos 8)2 +r(sin 8)2| Ty
sin & rcos#
Therefore,
frixo(xy23) 1 T 1 1 1,
rﬁ' = - = — —x3/2 E_xz-"r‘
fR"E( ! ) |_Ii|'| ~am W2
T - (Eea3)2
21
=L g2 O=r<ow,mwm<f<nw
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fz(n) :.r;: lre 24 = e 2

-
LT

—r-"",-fz D ‘a_: d:m
Folr :{re =Zr
R() 0 a.w
= — T LY ST
fa(8) :{2-‘? -
0 o.w
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Basic Definitions and Terminology

In statistics, we take a random sample (Xi, Xa, ...... , X;) of size (n) from a distribution X
(population) for which the pdf is f, (X) by performing that experiment (n) times. The purpose
is to draw conclusions from properties of the sample about properties of the distribution of the
corresponding X (the population)

First let us introduce some basic definitions about the random sample
The sample mean [i, is defined as :

5 i 17
m (orX)= =3 X
N =y
The sample variance 6% is defined as:
1 n

A2 ~ 2
6y =—>) (X; -

X n _1;( i MX)
&, =+/65 is called the sample standard deviation.

A computationally simpler expression for G2 is:
n 2 n 2
Ny X" = DX
A2 i=1 i=1
[e) =

% n(n —1)

Regression Techniques:

Suppose in a certain experiment we take measurements in pairs, i.e. (X1,¥1) , (X2,¥2), -.. (Xn,Yn).
We suspect that the data can be fit in a straight line of the form y=ax + .

Suppose that the line is to be fitted to the (n) points and let (€) denote the sum of the squares
of the vertical distances at the (n) points, then

e:i[yi - (ox; +B)]2

The method of least squares specifies the values of ocand  so that € is minimized.

a n

a_:t:_z;(yi'axi_ﬁ)xi:o y4 (Xi, axi + B) ¢

0 _ .~ oy R) =

B Zg(yi ax; —B)=0

nB+0cZn:Xi :Zn:yi ......... (1) (Xi,yi)

Bixi +aixf:ixiyi ......... () l

In matrix form, these equations are:

AR

These two equations are called the normal equations.

2o

Solving the above two equations for the two unknowns, we get:
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XY =2 X2V
o= =t i=1 i=1 _ Yxy

n(n -1) 62 &5
1 @ nzxiyi_ZXiZYi
where, Cy, =——> (X; —fix) (y; —fiy) =—2 =L =L s the sample covariance
n-14z n(n-1)

between x andy and &5 is the sample variance of the x measurements (as defined earlier).

B=py —oyy

where, (i, :EZXi and [, :EZyi are the mean of the x and the y measurements
) N5

respectively.

A useful formula for o may also be taken as:

n
inyi —-n llx ltlY
o= (Curve passes through [1, and i .)

n

> -0

i=1

A

, : . C
Finally, the sample correlation coefficient can be calculated as p, , = —%*¢
~ OxOy

Fitting a Polynomial by the Method of Least Squares:

Suppose now that instead of simply fitting a straight line to (n) plotted points, we wish to fit a
polynomial of the form:

y=pB, +B,X +B3X2
The method of least squares specifies the constants f3,,p, and3, so that the sum of the
squares of errors € is minimized.

e:i:[Yi '(Bl +B,X; +l33Xi2)]2

Taking partial derivatives of € with respect to ,,, and 3, .

B,N +B2_Zn:xi +B3_Zn:xf :Zn:yi ......... (1)
Blzn:xi +Bzzn:xi2+[332n:xi3zzn:xiyi ......... )
Blixf +Bzixf’ +Bsixf :ixfyi ......... (3)

In matrix form, these equations are:
nooXx 2 x)(B) [ 2V
zxi lez ZX.S B, |= inyi
>xi Xxt Xxip,) (X

Then these equations can be solved simultaneously for3,,3, and 3, .
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Fitting an Exponential by the Method of Least Squares:

Suppose that we suspect the data to fit an exponential equation of the form:

y=ae™ .. (1)
Taking the natural logarithm:

In(y) =In(a) + In(e™)

In(y)=In(@+bx ......... (2)

LetY' =In(y) ; p'=In(@) ; o'=b

So, equation (2) now becomes Y’ =B’ +a'x

Which is the case of the straight line treated first. For each y; take its natural logarithm to getY,
The new pairs of the data are (X1, Inyy), (X2, Iny2), ... (xn, Inyy,), the solution of which is known.

EXAMPLE (5-1):
Suppose that the polynomial to be fitted to a set of (n) points is y = b x. It can be shown that:

b:ixiyi /ixiz
i=1 i=1

EXAMPLE (5-2):

Lety =ax".

Taking the In of both sides, then:
Iny=Ina+blinx

y =B'+a x"  (Linear regression)
where:y'=Ilny , B'=lna , a'=b , X' =Inx

EXAMPLE (5-3):

If y=1-¢ @
Manipulation of this equation yields:

In In(iJ:In a+blnx
1-y

which is the standard form:

y'=p'+a'x  (Linear regression)

EXAMPLE (5-4):
L

1_+_ea+bx
This form reduces to:

In[ﬂj:a+bx
y

which is in the standard form:
y=p'"+a' x"  (Linear regression)

If y=
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EXAMPLE (5-5):

The number of pounds of steam used per month by a chemical plant is thought to be related to
the average ambient temperature (in °F) for that month. The past year’s usage and temperature
are shown in the following table

Month Temp. Usage Month Temp. Usage
Jan. 21 185 July 68 621
Feb. 24 214 Aug. 74 675
Mar. 32 288 Sept. 62 562
Apr. 47 424 Oct. 50 452
May 50 454 Nov. 41 373
June 59 539 Dec. 30 273

a. Assuming that a simple linear regression model is appropriate, fit the regression model
relating steam usage (y) to the average temperature (x).

b. What is the estimate of expected usage when the average temperature is 55 F°*?

c. Find the correlation coefficient between x and y.

Solution:
a. The linear regression model to be fitis y = ax+ g

12 12 12 12
Here, > x; =558, x” =29256, » X;y; = 265607, § y; = 5060

i=1 i=1 i=1 i=1
The equation parameters are given by: a = 9.2182, B = - 7.3126. The minimum value of the
mean square error is MMSE = 38.1315. VERIFY THESE RESULTS.
b. when the temperature is 55 F°, the linear model predicts a usage of y=9.2182*55 -7.3126 =
499.69. (Note that this temperature is not one of those that appear in the table, yet the model
can predict the usage at this temperature).
c. The correlation coefficient between the x and y data = 0.9999. This is very close to 1
meaning that the data are highly correlated (we know that when y is linearly related to x, the
correlation coefficient =1).

Now let us try to fit the data in a polynomial y =B, +B,x + B,x*. The equation parameters are:

P, =-5.0455, p,=9.1068 , B, =0.0012 . The MMSE = 37.0561.

Note that the second order curve fitting has too little effect on the mean square error, which
essentially implies that the linear model is quite satisfactory.
The linear model and the measured data are shown in the figure below

7001
600
500
> 400
3001
2007
100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ :
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Sums of Random Variables and the Central Limit Theorem

Theorem:

Let X, Xs, ..., X, be a sequence of Gaussian random variables, then any linear combination of
them is Gaussian, i.e., if

Y=C X1 +CXo+...... + Cn X,
Then the pdf of y is: f,(y)=——=—e 2%
where 1, =Cizy, +Copt, + e, +C,u,

And Gf = Clzaf +C220'22 +... +ano-f +2C,C,0,0,p,, +2C,C,0,0,p,, +2C,C,0,0,p,; +...

The following example illustrates this theorem for the case when the random variables are
dependent Gaussian random variables.

EXAMPLE (5-6):
Let X; and X, be two Gaussian random variables such that: 4, =0, o’ =4, u,=10,
o; =4, p,=025. Define Y = 2X; + 3X;

a. Find the mean and variance of Y
b. Find P(Y< 35).

SOLUTION:
L, =24 +3,=2(0) + 3(10) = 30

oy =4a; +90; +2(2)(3)(0.)(,) 1, =4(4)+9(9)+2(2)(3)(2)(3)(0.25) = 115
P(Y <35) =d( 35-30

V115

) = d(0.466) = 0.6794

Theorem:
Let X1, Xo, ..., X be a sequence of independent Gaussian random variables, each with mean
and variance o7 . Define

Y=C X1 +CoXo+...... + Cn Xy
Then Y has a Gaussian distribution with mean and variance given by:
ty =Cop +Copty, +... +C. 4,
o; =Clo{ + Clo) +..+Clo
EXAMPLE (5-7):
Let X; and X, be two independent Gaussian random variables such that: 4 =0, o =4,
1, =10, o7 =4. Define Y = 2X; + 3X;

c. Find the mean and variance of Y
d. Find P(Y<35).

SOLUTION:

L, =244 +3p,=2(0) + 3(10) =30
ol =407 +907 = =4(4)+9(9) =97
35-30

Jo7

P(Y <35) = d(

) = ®(0.5077) = 0.6942.
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Theorem:
Let Xy, Xy, ..., X, be a sequence of independent Gaussian random variables, each with mean

and variance o?. Define
Y= (X]_ +Xo+...... + Xn)/ n

Then Y has a Gaussian distribution with mean and variance given by: g, =1, o =c’/n . Y is
called the sample mean and will be denoted by 4 or X .

EXAMPLE (5-8):

Soft-drink cans are filled by an automated filling machine. The mean fill volume is 330 ml
and the standard deviation is 1.5 ml. Assume that the fill volumes of the cans are independent
Gaussian random variables. What is the probability that the average volume of 10 cans
selected at random from this process is less than 328 ml.

SOLUTION:
a=X+X,+..X,)/n
E{i}=(u+u+..0)In=p=330
Var(i) =c®/n=(1.5)*/10=0.225
£ 1s Gaussian with mean 330 and variance 0.225.
328-330

\/0.225

The Central Limit Theorem:
Let X1, Xz, ..., X, be a sequence of independent random variables, each with mean ., and

P( < 328) = d( ) = ®(-4.21) = 1.2769¢-005.

variance o, then the sample mean defined as:
a =K+ X+ ... +Xp)/n
approaches a normal distribution (a8 n — oo) with mean and variance given by: E{i}=u,,
By — Ky
o, /n

Var(i) =o?’/n . That is, the limiting form of the distribution of: Z= asn—oo, is the

standard normal distribution.
- In many cases of practical interest, if n>230, the normal approximation will be satisfactory
regardless of the shape of the population. If n < 30, the central limit theorem will work well if

the distribution of the population is not severely non-normal.

The theorem works well for small samples n = 4 , 5 when the population has a continuous
distribution as illustrated in the following example.

EXAMPLE (5-9):

Let Y = X3+ X,+X3, where Xi are uniform over the interval (0 < Xi < 1) and are independent.
Find and sketch the pdf of Y.

SOLUTION:
First we find the pdf of (X;+ X3) by convolving the pdf of X; with that for X,. Then the new

pdf is convolved with that for X3. The result is:
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0 y<0
y2 /2 0<y<1
f,(y)=43y—-y*-3/2 1<y<2
(3-y)*/2 2<y<3

0 y>3

The mean and variance of Y are: u, =3(1/2)=3/2, o =3(c,)* =3(1/12) =3/12. In the

figure below we plot the pdf’s of X and (X;+ X3). Also, we plot the Gaussian pdf (Solid line)
with mean 3/2 and variance 3/12 on the same graph of the pdf for Y=X;+ X,+X3 (dashed line)

1.2
|
< 0.8
0.6/
0.4/
0.2|
% 0.5 1 1.5
X
1.2
n |
0.8 1
>0.6f 1
0.4r 1
0.2r i
00 0‘5 'i 1‘.5 2 2.5
y
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It is very clear that even for n=3, f(y) is very close to the Gaussian curve.
Now let us calculate P(0O<Y < 1) using the exact formula and the approximation.

1
PO<Y<1)= j y?/2dy =0.1666; Exact probability

PO<Y’<1)= (I)(\/(%) ®(O;—J17§) =0.1587-0.0013= 0.1574.; Gaussian approximation

P(O<Y<1) 0.1574

= = 94.44%
P(O<Y'<1) 0.1666

EXAMPLE (5-10):

An electronic company manufactures resistors that have a mean resistance of 100 Q and a
standard deviation of 10 Q. Find the probability that a random sample of n = 25 resistors will
have an average resistance less than 95 Q.

SOLUTION:

{1, is approximately normal with:

mean = E(j1, )= 100 Q. A
2 2
Var (i) =65 = 2% =2
n
/GX /102
25
95-100 3
P{(, <95} =P{Z< > U
{0 } { } 95 100 X

= d(-2.5) =0.00621

EXAMPLE (5-11):
The lifetime of a special type of battery is a random variable with mean 40 hours and
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standard deviation 20 hours. A battery is used until it fails, then it is immediately replaced by
a new one. Assume we have 25 such batteries, the lifetime of which are independent,
approximate the probability that at least 1100 hours of use can be obtained.

SOLUTION:
Let Xy, Xo, ..., Xo5 be the lifetimes of the batteries.
LetY =X +Xp+...... + Xo5 be the overall lifetime of the system

Since X; are independent, then Y will be approximately normal with mean and variance:

My =y + Uy + o+ pye = 251 =25%40 =1000
0. =0} +0) +..+ 0. =250; =25*(20)* =10000

1100-1000

P(Y >1100) = P(Z >
/10000

) =P(Z>1)=1-d(1)=0.158655

EXAMPLE (5-12):

Suppose that the random variable X has a uniform distribution: over the interval 0< X< 1.A
random sample of size 30 is drawn from this distribution.
a. Find the probability distribution of the sample mean

b. Find P(4) < 0.52

SOLUTION:
Since X has a continuous distribution, and since n = 30, then the probability density function

of the sample mean [i, is approximately normal with:
E(i,)=E(X)=1/2.

2 1/12 1
Var 7 :AZZO-—X:—:_
) =0 =="= 30 =380
0.52-05
P{i, <052} =P{Z< 222 _0379}
= V1/360

= ®(0.379) = 0.648027

EXAMPLE (5-13):

Suppose that X is a discrete distribution which assumes the two values 1 and 0 with equal
probability. A random sample of size 50 is drawn from this distribution.
a. Find the probability distribution of the sample mean

b. Find P(z,) < 0.6

SOLUTION:

Since n=50 > 30, then we can approximate the sample mean by a normal distribution with:
E(i,) = E(X) =0*1/2 + 1*1/2 =1/2.
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2 B ™ - -
Var(;}x)zgf(z‘f_xz(o 1/2)**1/2+@-1/2)°*1/2 _ 1

50 200
P{n, <0.6}=P{z< 202051 _ p(.414) = 092073
J1/200

Estimation of Parameters:

The field of statistical inference consists of those method used to make decisions or to draw
conclusions about a population. These methods utilize the information contained in a sample
from a population in drawing conclusions.

Statistical inference may be divided into two major areas:
Parameter estimation and hypotheses testing. In this chapter, we focus on parameter
estimation and consider hypothesis testing in the next chapter.

Basic Definitions and Terminology

In statistics, we take a random sample (X1, Xz, ...... , Xn) of size (n) from a distribution X
(population) for which the pdf is f, (X) by performing that experiment (n) times. The purpose
is to draw conclusions from properties of sample about properties of the distribution of the
corresponding X (the population). We do this by calculating point estimators or confidence
intervals or by performing a test of parameters or by a test for distribution functions.

For populations we define numbers called parameters that characterize important properties of
the distributions (u, and o in normal distribution, (p) in binomial distribution, A for the

exponential distribution, the rate of arrival in the Poisson distribution, the end points a and b in
the uniform distribution). Here, the pdf is explicitly expressed in terms of the parameter as
f. (% &) . The unknown parameter (0) is estimated by some appropriate function of the

observations =F(X,, X,,..ccc..., X ;)

The function é:f(xl, D SR ,X,,) s called statistics or an estimator. A particular value of
the estimator is called an estimate of 0.

A probability distribution of a statistic is called its sampling distribution

The random variables Xi, X,, ..., X, , called a random sample, have the same distribution and
are assumed to be independent.

Estimator: is a function of the observable sample data that is used to estimate an unknown
population parameter.

We consider two types of estimators, point estimators and interval estimators.

Point Estimation:
Point estimation involves the use of the sample data to calculate a single value which is to
serve as a best guess for an unknown parameter. In other words, a point estimate of some

population parameter (0) is a single numerical value é:f(xl, ) SR , X

n

In the table below we list some examples of point estimators and the parameters that are used
to estimate.
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Unknown A
Parameter (0) Statistic (©) Remarks
1a Used to estimate the mean regardless
[T [y =—in of whether the variance is known or
Nz unknown.
. 1 . Used to estimate the variance when
2 2 2
= — X. - .
Ox ox =y -1%:( R the mean is unknown.
. 13 Used to estimate the variance when
2 2 2
== (X, - ;
Ox Ox = ;( T Bx) the mean is known.
Used to estimate the probability of
p_X a success in a binomial distribution.
P n n : sample size
X : number of successes in the sample
B (-l = - X1 N X2 | Used to estimate the difference in
Hxa ™ SRS o P A the means of two populations.
B p_p _Xi_X2 Used to estimate the difference in
P1—P2 to2 n, n, the proportions of two populations.

Desirable Properties of Point Estimators:

1- An estimator should be close to the true value of the unknown parameter.

2-

Definition:
A point estimator () is unbiased estimator of () if

E@©)=0.

If the estimator is biased, then E() — 6 =B is called the bias of the estimator (8).

Let ,,6, be unbiased estimators of ().

A logical principle of estimation when selecting
among several estimators is to chooses the one
that has the minimum variance.

Definition:

If we consider all unbiased estimators of (6),

the one with the smallest variance is called

the minimum variance unbiased estimator (MVUE).

When (Var(,) < Var(6,), 6, is called more efficient than 6,)

A

Distribution

A

of 0,

Distribution

A

of 0,

N\

v

0

The variance Var(0) = E{[0 — E(0)]?} is a measure of the imprecision of the estimator.

3- the mean square error of an estimator () of the parameter (6) is defined as:

MSE() = E(0 — 0)?

This measure of goodness takes into account both the bias and imprecision.

I\/ISE(é) can also be expressed as:

M SE(6) = E{[0— E(6) + E(6) - 0]°} =E{[(0—E(6)) + ((E(0) -0))]’}

NBﬂ@:E@—aQY+233@-E@»+B%ﬂmm®;sz

MSE(6) = Var (6) + B2
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- Definition:
An estimator whose variance and bias go to zero as the number of observations goes to infinity
is called consistent.

EXAMPLE (5-14):
Show that the sample mean s,

1 n
() = — X
X n 2; i
is an unbiased estimator of the population mean
SOLUTION:

1

E{,&X}:%E{Zn:xi}: %{Zn: E{xi}}: %{Zn:;zx}: —(n,) = 1, (unbiased estimator)

The variance of j, is

5

2

Var{/, }= Var{Zx }:Var{ﬁx}:& (The variance tends to zero as n tends to infinity.
n

Therefore, 4, is unbiased and consistent estimator). When n goes to infinity,

AR

EXAMPLE (5-15):
Show that the sample variance 65 (when the mean is unknown).

:_Z(

is an unbiased estimator of the population variance %
SOLUTION: A computationally simpler expression for the sample variance is

n n 2
ny x,” —[inj
62 — i=1 i=1

* n(n—l)
e (B feen-aig e (8 |

Note that since E{x’}=u% + o5, then n> E(x,”)=n’(u; +0o%)

i=1

E{Ax}_

j=1 i=1 j=1 i=1 j=1
The double summation contains n® elements, n terms are such that i=j, and (n®>-n)=n(n-1) are
such that i #j. When i=j, E{x’}= u + 0%, and when i #j, E(xX;) = E(X)E(X;) = 1% since
the random variables are independent.
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Therefore, > > E(x;X;) = N(ux +0x)+n(N—Dux = noy +n°uy

E(63}- (1_1) b3 +o2)-not —nt )

- 2 2 21 1 qy 2
{x}—n( 1){ O-x_ndx}_ n(n-l)n(n Doy
E{éx}:Gx

EXAMPLE (5-16):
Let X1 and X2 be a random sample of size two from a population with mean p, and variance

X1+ %5 and /;,ZZXﬁTZXz, Which

c.. Two estimators for py are proposed: i, =

estimator is better and in what sense?

SOLUTION:
E(i)= E(X X, = # +”X = u, (Therefore, 4, is an unbiased estimator of u, )

. X +2x x+2 )
E(i) = (71 2y = £ 3“

Now, we evaluate the variance of the two estimators:
From previous results we know:

= u, (Therefore, £, isalso an unbiased estimator of x, )

Var (i) =Var ("2 72) = L7 + 0% = o
4 2
X, +2X
Var(4,) =Var(Z1 272 2)—— g(;s:gag

Since Var([zl):zaf < Var(,[zz):gaf, then the first estimator is more efficient, and

therefore is better than the second.
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Method for Obtaining Point Estimators: The Maximum Likelihood (ML) Estimator

Let us start this section with two motivating examples:

EXAMPLE (6-1):

The probability p = P(H) of a coin may be 0.1 or it may be 0.9. To resolve the uncertainty,
the coin was tossed 10 times and 3 heads were observed. What will be your estimate for p in
light of the experiment outcome?

Solution:
Let us calculate the probability of getting 3 successes in 10 trials for the two possible values
of p using the binomial distribution

P(x=30.1) = (13?}(0.1)3(1— 0.1)"=0.0574

P(x=3,0.9) = (130](0.9)3 (1-0.9)" = 8.748e-6

Therefore, we conclude that p=0.1 has a higher probability of producing the outcome and our
estimate for p would be p=0.1.

Instead, suppose that the experiment resulted in 8 heads, what would be our estimate for p?.
Again, we calculate

P(x =8;0.1)=3.645 e-7

P(x =8;0.9)=0.1937

A

In this case p=0.9.

EXAMPLE (6-2):

Let p be the probability of a success in a binomial distribution. This probability is unknown.
To estimate p, the experiment is performed 10 times and 3 successes were observed. Find a
maximum likelihood estimate for p.

Solution:
Any value of 0< p <1 is likely to produce the three successes in the 10 trials. But there is a

specific value, p, to be estimated, that has the highest probability of producing the result.
This value of p is called the maximum likelihood estimate.

The probability of getting 3 successes in 10 trials for any value of p is:
10
f(p)=P(x=3p) =(3jp3(1— p)’

To find the value of p that maximizes f(p), we differentiate f(p) with respect to p, set the
derivative to zero, and solve for p

df 10
4P) _ [ 3pz - py +7p°@- p*(-2]=0
dp 3

Solving for p we get p =3/10.

For the sake of comparison, let us compute f(p) at three different values of p; p=0.3, p=0.35,
and p=0.25. f(0.3) = 0.2668, f(0.35) = 0.2503, f(0.25) = 0.2522. Hence p =3/10 has the
highest probability of generating the 3 successes in 10 trials.
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To find the maximum likelihood estimator of a parameter 6, we base our estimation on (n)
statistically independent samples {Xi, Xa, ..., Xn} taken from the population. The maximum
likelihood estimator selects the parameter value which gives the observed data the largest
possible probability. The following steps summarize the procedure for obtaining a maximum
likelihood estimator for a continuous parameter 0.

- The joint pdf of the samples is (expressed in terms of &)
L(6) = f{X1, X2, ..., xn; 0} =F{X1; 6} . f{X2; 0} ...... f{x,; 6} = due to independent of x;.

L(0) is called the likelihood function. The maximum likelihood technique looks for that value
(é) of the parameter that maximizes the joint pdf of the samples.

- A necessary condition for the maximum likelihood estimator of (0) is:
d . d
—L(0) =0 or equivalently —In\L(0);=
5@ q Y 55 NLO);
(The In(*) is a monotonically increasing function of the argument)
The following example illustrates this technique.

EXAMPLE (6-3):
Given a random sample of size (n) taken from a Gaussian population with parameters p, and
o4 . Use the ML technique to find estimators for the cases:

a- The mean p, when the variance o5 is assumed known.
b- The variance o’ when the mean p, is assumed known.
c- The mean p, and variance o5 when both are assumed unknown.

SOLUTION:
(X HX)
*(X P—x) 721 o%
w2875 = Z(X —%In(chf()
1/271(5)( (2ncf()5 i1
a- Set dd InL(u)=0 => treating o’ as a constant.
Mx
D —fiy)?=0 > [y :Ein ......... (1)  Unbiased Estimator
= n<

Thus the ML estimator of the mean is the sample average mentioned earlier.

as a constant

Gx

A 13 . :

The result is 6% =HZ(Xi -u)? (2)  Unbiased Estimator
i=1

Note that: the division is by (n) since we are using the known mean of the distribution

c- Set InL(x, , c%)=0 and 82 InL(z, ,02)=0
Ky doy
. 1 L, 14 o
Thisresultsin: i, ==>'%; and &% ==> (X, -fiy)
n i )

n-1
&2 is a biased estimator since E{6% _@
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1 n

For this general case, the unbiased estimator of ¢4 is: 6% :—Z(xi -fiy)?

n-1=
Which is the sample variance introduced earlier.

EXAMPLE (6-4):

Given a random sample of size (n) taken from a distribution X with pdf
f(X)=(x+1)x“,0<x<1.

Use the ML technique to find an estimators for a.

SOLUTION:

The likelihood function is
L(@) = £ () f (%) F (x,)
L(a) = (@ +D)x..(a +DXx  =(a+D)" % ..x7
InL(e) =nin(e+) +aInx,...+ alnx,
Differentiating with respect to a and setting the derivative to zero, we get

9@ =-""tInx..+Inx, =0
da a+l

Solving for a we get
n 1

a= -1 —1 (note that In x, <0 since 0 < x <1)

—Inx.—nx, (> Inx)/n
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Finding Interval Estimators for the Mean and Variance:

An interval estimate of an unknown parameter of (6) is an interval of the form 6, <6<0,
where the end points 6, and 0, depend on the numerical value of the parameter to be
estimated (0) for a particular sample. From the sampling distribution of (6) we will be able to
determine values of 0, and 6, such that:

P(6,<6<06,)=1-a , a>0 1 0<axl

where: 6 is the unknown parameter
(- o) is the confidence coefficient

a is called the confidence level.
0, and 6, are the lower and the upper confidence limits

. Confidence Interval on the Mean: (Variance Known)

Suppose that the population of interest has a Gaussian distribution with unknown mean p,

and known variance c%.
2

. o . 13 . . . .
The sampling distribution of fi, :—in is Gaussian with mean p, and variance Ox
n'io n

Py — Ky
GX/\/H
Ay —Hyx

P%g%SZSg%izl—a > P{—g%gwgg%}zl_a

Piﬁx ~%. Gx/\/ﬁﬁ}lx <[y t5., Gx/\/ﬁkzl—oc

Therefore, the distribution of the statistic Z= is a standard normal distribution.

al2 o/2

Confidence Interval AL G2
I , >
\ ., Error , 37
ﬁtx—gx%cx/\/ﬁ L, L, ﬁx+5/%0x/\/ﬁ

Definition:
If 4, is the sample mean of a random sample of size (n) from a population with known
variance o4, a 100(1 — )% confidence interval on ., is given by:

B _5/% cFx/\/ﬁéux <fiy +Z’% cFx/\/ﬁ

where 5/0/ is the upper 100(a/2)% point of the standard normal.
2

Choice of the Sample Size:

The definition above means that in using (i, to estimate p,, the error E =| i, —p, | is less
than or equal to %o, o, //n with confidence 100(1 — a). In situations where the sample size
2

can be controlled, we can choose (n) so that we are 100(1 — )% confident that the error in
estimating p, is less than a specified error (E).

&0, Ox i
(n) is chosen such that E=%,, oy /\n P n= 2T .
2
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EXAMPLE (6-5):

The following samples are drawn from a population that is known to be Gaussian.
7.31 | 10.80 | 11.27 | 11.91 | 551 8.00 9.03 | 1442 | 10.24 | 10.91

Find the confidence limits for a 95% confidence level if the variance of the population is 4.
SOLUTION:
From the sample we have:

n=10
L1
iy ==>x; =9.94

| oy
%,, =196
Piax_?%Gx/\/ﬁg}flxSﬂx‘*‘é’%cx/‘/ﬁ}:l_a
plogs L9BXVE _ _gq, LO6xVA[ ol

V10 V10

P{8.70 <, <11.1796}=0.95

Il. Confidence Interval on the Mean: (Variance Unknown)

- Suppose that the population of interest has a normal distribution with unknown mean p, and
unknown variance G2 .

- Definition:

Let X1, Xo, ...... , Xn be a random sample for a normal distribution with unknown mean p,
and unknown variance o2 . The quantity
T — pl’X - ”’

&y 1n

has a (t-distribution) with (n — 1) degree of freedom. I f(t)

F[(k”)j |
The t'pfd |S fT (t) — 2 1 ) ~-o<t<oo :
I
I
]

JrK r(;j[ 2 ]2 /2

o/2

k+1
(K) is the number of degrees of freedom. t oo Lo

The mean of the t-distribution is zero and the variance kL

The t-distribution is symmetrically and unimodal, the maximum is reached when the mean is 0
(quite similar to normal distribution. As k — oo, the t-distribution is the normal distribution).

P{_ tq/z,n—l <T< ta/z,n-l}zl_ a
iy —H
T=
&y I/n
ta/2,n-1 is the upper 100(a/2)% point of the t- distribution with (n — 1) degree of freedom

is the t-distribution with (n — 1) degree of freedom
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P{_ta/zm MX/\/— ta/an} 1-a

Definition:

If i, and &, are the mean and standard deviation of a random sample from a normal
distribution with unknown variance c%, the 100(1 — o)% confidence interval on ., is:

. Ox
P{“X - (x/2 n1\/_ Shy Sy + (x/2,n-lﬁ}:1_

where ta/Z,n—l is the upper 100(a/2)% point of the t-distribution with (n—1) degrees of freedom.

EXAMPLE (6-6):
For the following samples drawn from a normal population:
731 | 10.80 | 11.27 | 1191 | 551 | 8.00 | 9.03 | 1442 | 10.24 | 10.91

Find 95% confidence interval for the mean if the variance of the population is unknown.

SOLUTION:
From the sample we have:
=12xi =9.94
n i

n 1 3 R
8% =7 DX, ~fix)? =651
e

From tables of t-distribution:

Number of degrees of freedom=n-1=10-1=9=v

0=0.05->0/2=0025->t, ,, =2263

. N A Sx | _
P{“X _ta/Z,n-lﬁSHX Syt t(x/Z,n-lﬁ}_l_
J6.51 \/6.51 —095
V10 '

« $9.94+2263 07
V10

P{8.11<u, <11.77}=0.95
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I11. Confidence Interval on the Variance of a Normal Population: (Mean Known)
- When the population is normal, the sampling distribution of:

n2 n 2 n
NGy Z Xi — My . a2 lz 2
= _ , Oy =— X. -
05( ( GX j X n i:]_( i MX)

i=1

1=
is chi-square with (n) degrees of freedom.

The confidence interval is developed as: ,
P{Xlz—cx/Z,n < X2 < Xi/z,n }:1_ a

~ 2

no
2 X 2 _
P{Xl—u/Z,n—l S—Gz SX&/Z,n—l}_l_a

X /2 a/?
, , AN l-a
no no
P f* <oy < ZGX =l-a Z >
Xa2,n X1-o/2,n K rwzin 'Xzafzm
- Definition:

If 6% is the sample variance from a random sample of (n) observations from a normal
distribution with a known mean and an unknown variance %, then a 100(1 — )% confidence

interval on o7 is:

A2 A2
no no
X <ci < X

2
Xaj2,n X1-a/2,n

where Xi/z,n and Xlz—a/Z,n is the upper and lower 100(a/2)% point of the chi-square distribution
with (n) degrees of freedom, respectively.

EXAMPLE (6-7):
For the following samples drawn from a normal population:
7.31 | 10.80 | 11.27 | 11.91 | 551 8.00 9.03 | 1442 | 10.24 | 10.91

Find 95% confidence interval for estimation of the variance if the mean of the population is
known to be 10.

SOLUTION:
From the sample we have:

ﬁx=%2xi:9.94 and 65 =

i=1

3 (X, -px)? =5.866

i=1

£
n
From tables of y?*-distribution:

Number of degree of freedom=n=10= v

a=0.05—0/2=0.025 > Yoorsi0=20.483 and 5.0 =3.247
A2 A2
p nZGX <ol < rzlcx 1eq D> I3{1O><5.866 <’ S10><5.866}=0.95
Xas2.n Aioj2.n 20.483 3.247

P{2.863< 2 <18.065/=0.95
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IV. Confidence Interval on the Variance of a Normal Population: (Mean Unknown)

- When the population is normal, the sampling distribution of:

2
N-1)6% &(x —p R 1 -
Xzziz X:Z ——= ,Gi:n_lz(xi'ux)z

Is chi-square with (n — 1) degrees of freedom.

- Definition:
If 62 is the sample variance from a random sample of (n) observations from a normal
distribution with an unknown mean and an unknown variance o5, then a 100(1 — )%
confidence interval on &2 is:
n-1)6: n-1) 62
( § )GXSGiS( . ) Gy

Xaj2,n1 X1-a/2,n1

where Xi/z,n-l and xfﬂ/z’n_l is the upper and lower 100(o/2)% point of the chi-square
distribution with (n — 1) degrees of freedom, respectively.

EXAMPLE (6-8):
For the following samples drawn from a normal population:
7.31 | 10.80 | 11.27 | 11.91 | 551 8.00 9.03 | 1442 | 10.24 | 10.91

Find 95% confidence interval for estimation of the variance if the mean of the population is
unknown.

SOLUTION:

From the sample we have:
1 n

iy ==>x; =9.94
N

A 1 -
6 =L 3 (x,-)? =651
n-143

From tables of y?*-distribution:
Number of degree of freedom=n=10-1=9=v

o.=0.05—> /2 =0.025
X2ozs s =19.023 and y2qrs o =2.7

1) A2 1) A2
p (N=Dox 21)GX <oy 3—(n2 Dox|_1_q
Xaj2,n1 X1-o/2,n1

P{g x6.51 _ o2 < 9 x 6.51} _0.95
19.023 2.7
P{3.0799 < 6% <21.7}=0.95
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V. Confidence Interval on a Binomial Proportion:

- Suppose that a random sample of size (n) has been taken from a large population and that
X ; (X < n) observations in this sample belong to a class of interest. Then P = x/n is a point
estimator of the proportion of the population (p) that belongs to this class. Here (n) and (p) are
the parameters of a binomial distribution.

(X) is binomial with mean (np) and variance np(1 — p). Therefore,
p(1-p)_p(-p)

n? n

p= x/n has a mean (p) and variance n

- As was mentioned earlier (limiting case of the binomial distribution to the normal distribution)
p(-p)
n

the sampling distribution P is approximately normal with mean (p) and variance

(p is not too close to 0 or 1 and (n) is large; {np >5}and {np (1 — p) >5}.

- To find a 100(1 — a)% confidence interval on the binomial proportion using the normal
approximation we construct the statistic:

__X-mp __P-p 35 <Z<z  |=1-
= = 3., <Z<%,
Jnp@-p) \/p(l—p) %4 4}
n
P —p
Pi—%, =l-a
7 pap) 0%
n

P{ﬁ,_ - p(l-p)<p<P+%/ (—p)} -

The last equation expresses the upper and lower limits of the confidence interval in terms of
the unknown parameter.

- The solution is to replace (p) by P in so that:

P{ﬁ- % P@- )<p<P+Z// P(L— P)}—l—a

p(-p)
n

EXAMPLE (6-9):
In a random sample of 85 automobile engine crankshafts bearings, 10 have a surface finish

that is rougher than the specifications allow. A 95% confidence interval for (p) is:

%, ~%ms =196 and P 5 _9 =0.12
2

- /f’(l—f’) /P(l P)
P{P 5(% —n <p <P }
P{O.lZ ~1.96, /w <p<0.12+1.96, /%} =0.95

P{0.05<p<0.19}=0.95
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Hypothesis Testing:

In the last chapter we illustrated how a parameter can be estimated (points or interval
estimation) from sample data. However, many problems require that we decide whether to
accept or reject a statement about some parameter. The statement is called a hypothesis, and
the decision-making procedure is called Hypothesis Testing.

Two types of error are possible in such a decision process:
We decide that the null hypothesis Hy is false when it is really correct
This is called a type I error and its probability is denoted by o

o is called the significance level or size of the test.

We decide that the null hypothesis HO is correct when it is really false

This is called a type Il error and its probability is denoted by

Definition:

The power of the test (1 — B) is the probability of accepting the alternative hypothesis when the
alternative hypothesis is true.

One-Sided and Two-Sided Hypothesis:
A test of hypothesis such as:

Ho: ©=06 Reject Ho Acecengo Reject Ho
Hi: 040, Accept H; = Y% Accept H;

0 # 0 Acceptance 0+ 0,
Is called a two-sided test. Rejection Region region Rejection Region

D>

Ho : is known as the null hypothesis.

H; : is known as the alternative hypothesis.

Tests such as:

Reject Ho
Ho: 0=0, Accept Ho Accept H;
Hi: 0>6 9= 6 6> 6o
Ho: ©=6 Reject Ho Accept Ho
Accept H;
Hi: 0<6g 0> 0, 0=0,

Are called one-sided tests.

a is called the significance level or size of the test.

The power of the test plotted against the true parameter value is called the Operating
Characteristic (OC) curve.

90--
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Hypothesis Testing on the Mean: Variance Known
Suppose that we wish to test the hypothesis:

Ho: pn=mno
Hi:  p#uo
Where L is a specified constant. We have a random sample Xi;, X, ...... , X, from the

A

population (assumed normal). ji is normal with mean p, and variance o®/n when Hy is
assumed true.

A

H—Ho

o/vn

If the level of significance is (o),

then the probability is (1 — o)

that the test statistic (Z) falls Critical

bet _ d _ region
etween 5/% an 5/% ~

Reject Ho if 2 >3, 01 <%, = 7 > ¥

Fail to reject Hy if —5/% <% < 5/%

We use the test statistic: Z= ; Zis N(0, 1) when Hg is assumed true.

N (0, 1)

Acceptance
region

In the terms of ﬁ, we reject Ho if: i>p, + 5/0/ cs/\/ﬁ or i<y, — 5/0/ cs/x/ﬁ
2 2

Suppose that the null hypothesis is false
and that the true value of the meanis u=p, +9,

when H; is true, Z is normal with mean: '

E(Z/H.) = E(Q/H,) - u, f(3/ Ho) f(z/ Hy)
: s/vn N (0,1) N (8v/n/s, 1)
o + §— I, S Accep_tance
E(Z/H,)= = region
G = s o
L ~(8Jn > %
and unit variance. Z : N(T,l] - B2 ﬁ
(@

The probability of type Il error is the probability that (Z) will fall between —5/0/ and %/-
2 2
This probability is:

Now if we want to test Ho: upn=po
Hi:  pu>po N(0,1)
_B—p ; : S
Z , Zis N(0, 1) when Hy is assumed true. qg; Critical

o/Jn

If (o) is the level of significance, then

region

Acceptance

%o

o

Ho is rejected if z- >z, and accepted if z <z,
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If Hy is true, thatis p=p, +8 , 8>0, then
The type Il error is the probability that z- falls between -ccand z, .
This probability is:

o

(e

N (0, 1)

o

|

|

|

|

|

|

|

|
o 5Jn

o

EXAMPLE (7-1):
Aircrew space systems are powered by a solid propellant. The burning rate of this propellant

IS an important product characteristic. Specifications require that the mean burning rate must
be 50 cm/s. We know that the standard deviation of burning rate is 2 cm/s. The experimenter

decided to specify a type | error probability of significance level of o = 0.05. He selects a

random sample of n = 25 and obtains a sample average burning rate of R =51.3 cm/s. What

conclusions should be drawn?

SOLUTION:

Test Hp: u=50cm/s ,a=0.05
Hi: pn#50cm/s

Rejected Ho if 2/>1.96 or z <-1.96

For n= 51.3 cm/s and ¢ =2 cm/s, then

Z:ﬁt—uo :51.3—50
o/n 2//25

Since 3.25 > 1.96 we reject Ho and we have strong evidence that the mean burning rate

=3.25

exceeds 50 cm/s.
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CHAPTER VII

SUMMARY FOR HYPOTHESIS TESTING PROCEDURE

NULL HYPOTHESIS TEST STATISTIC ALTERNATIVE HYPOTHESIS | CRITERIA FOR REJECTION
Ho: p=po H, iu#p, |Z|>5’o/
2 A 2
o known 7 - H~Ho
~ o/n Hyip>pg Z>y,
N, 1) Hyotp<pg L<-%
Ho: n=mo . H, tpe g [ t]>tns
c® unknown T=H"Ho
&/<n Hytp>py t> 105 01
student t-distribution
with (n — 1) degrees of freedom Hyfp <, t<—t,5n1
. 2 2 2 2 2 2
Ho: o° =0y . (-1)6 H,:o” %o} X > Xeoy2,01 ML <Aia2,n1
p unknown = , s
GO ch >GO X >X(x,n—1
Chi-square distributions . ,
with (n — 1) degrees of freedom H,:c" <oy X <Atan1
Ho: o” =0 s H,: 0% %62 X° > Negan OV <At ajon
known x’ =
g : H, 0% > o x>l
Chi-square distributions . .
with (n) degrees of freedom H, c” <oy X" <At
Ho P =Po . : Z| >
7 X_npo B P_po Hl'p;tpo | | 5/%
Jnpe (1 -p,) \/po(l—po) H,:p>p, Z>%,
n
N, 1) H.:p<p, Z<-3,
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= Decision Making for Two Samples:

- The previous chapter presented hypothesis tests and confidence intervals for a single
population parameter (the mean n, the variance o, or the proportion p). Here we extend
those results to the case of two independent populations.

- Population (1) has mean p, and variance o, population (2) has mean p, and variance o .
Inferences will be based on two random samples of sizes (n;) and (n,).

That is Xi1, X1z, ...... , X1n1 1S @ random sample of (n;) observations from population 1, and
Xo1, X2z, - , Xonp 1S @ random sample of (n,) observations from population 2.
A A
(52
1 Gg
M1 H2

= Inferences for a Difference in Means: Variances Known

- Assumptions:

1- Xi1, X2, ... , X1n IS @ random sample from population 1.

2- Xo1, X2, o.o... , Xon IS @ random sample from population 2.

3- The two populations presented by X; and X, are independent.

4- Both populations are normal, or if they are not normal, the conditions for the central limit
theorem apply.

- The test statistic 7z~ =2 = (1 1) pasan N(, 1) distribution.

2 2
%1, %
nl n2

= Testing hypothesis on (1 — p2): Variances Known

Null hypothesis: Hp: pi— 2 =Ag

Test statistic: 71— H2 — (Ao)

o1, %2
n, n,

Alternative Hypothesis Criteria for Rejection
H,otpy —py, #A, Z>g% or Z<—g%
Hotp —p, >A, Z>y,

H,tpy —p, <A Z<-gz,
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Definition: Confidence Interval on the Difference in Two Means: Variances Known.

If (i, and {1, are the means of independent random samples of sizes (n1) and (nz) with known
variances o and o, then a 100%(1 — o) confidence interval for (u; — ) is:

iz~ 3y | S 2 Sy iy S~y 5, [ O
1 2 % nl nz — M1 2 =M1 2 % nl n2

where is the upper o/2% point of standard normal distribution.
&y,

Inferences for a Difference in Means of Two Normal Distributions: Variances Unknown

Hypothesis tests for the difference in means:
CASE I: 6} =6, =0

The pooled estimator of o*denoted by s; is defined as:

82 _ (nl _1)512 +(n2 _1)55
p

n,+n, -2

The statistic T— 41 =Rz = (1 ~Ha) pag 4 t.distribution with (ny + np— 2) degrees of freedom
s, 1.1
nl n 2

when Hy is true.

The Two-Sample Pooled t-test:
Null hypothesis: Hp: pi— 2 = Ao

Test Statistic: T — M1~ H2 —(A0)

1 1
S, o+
nl n2
Alternative Hypotheses Criteria for Rejection
Hl B U Pl U iAO t>tou/2,n1+n2—2 or t<toc/2,n1+n2—2
Hyotpy —p, >4, t>t, o in,2
Hl :Hl — M, <A0 t<_ta,,n1+n2—2

Definition: Confidence Interval on the Difference in Means of Two Normal Distributions:
Variances Unknown and Equal.

If i,, 4,, SI, and S; are the means and variances of two random samples of sizes (n;) and
(n2) respectively from two independent normal populations with unknown but equal variances,
then a 100%(1 — o) confidence interval on the difference in means (u; — o) Is:

L 1.1 _ e 1 1
My = Hy =T 000, 25P H_1+E SHy =M SHy = f 4, 00 oSe n_1+E
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CASE II: 67 #0)

If Ho: wi—pp=Aqistrue, then the test Statistic T* = H1 —H2 — (A0)
st S
_—— + =
nl n2
Is distributed approximately as t with degrees of freedom given by:
2
I -2 if Ho is true.

(:/n.) | 2/n,)

n,+1 n,+1

Definition: Confidence Interval on the Difference in Means of Two Normal Distributions:
Variances Unknown and Unequal.

If i,, 4,, SZ, and S; are the means and variances of two random samples of sizes (n;) and
(n2) respectively from two independent normal populations with unknown and unequal
variances, then an approximate 100%(1 — o) confidence interval on the difference in means
(11— o) is:

S s s: s

0, -t v 2+ 2 <pu -, <p—,+t ., V.2 +—2

{M K, tu/g n, n, L —Hy Sy — Uy ta/Z n, n,
Inferences on the variances of two normal populations:

Next, we introduce tests and confidence intervals for two population variances. Both
populations are assumed normal.

Definition:
Let Xq1, Xpo, ... , Xim be a random sample from a normal population with mean p, and
variance o, and let Xy, Xa, ...... , Xonz be a random sample from a second normal

population with mean n, and variance c5. Assume that both normal populations are
independent. Let S2 and S be the sample variances, then the ratio:

_Silo;

- S/o;
has an F distribution with (n; — 1) numerator degrees of freedom and (n, — 1) denominator
degrees of freedom.

Hypothesis testing procedure:
A hypothesis testing procedure for the equality of two variances is based on the following:
Null hypothesis: Ho: o’= o5

S;

s

Test Statistic: ~ F, =
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Alternative Hypotheses Rejection Criterion
H, ZGf # Gg f, > fu/Z,nl—l,nz—l or f, <fl—a/2,n1—1,n2—l
. 2 2
H,:01 >0, fo >foc,n1—1,n2—1
. 2 2
H,:c; <o, fo <fion1n,

Definition: Confidence Interval on the Ratio of Variances of Two Normal Distributions.

If S? and S are the sample variances of random samples of sizes (n;) and (n;) respectively

from two independent normal populations with unknown variances o’ and o2, then a
1 2
2
. . . O .
100%(1 — ) confidence interval on the ratio —- is:
G,
2 2 2
S <0 S
—a/2,n,-1n,-1 = = 2,n,-1,n, -
Sg 1-0/2,n;-1,n,-1 03 Sg o/2,n;-1,n,-1

where f,, . and flfa/z,nl—l,?zfl A Fx(%)
are the upper and lower a/2% points

of the F distribution with (n, — 1)
numerator degrees of freedom and

(n1 — 1) denominator degrees of al?
freedom respectively. 1-a
1
f(x/2,u,v ‘
fl—a/Z,u,v f

al2

Remark: fH/Z’u’V =

Y

0/2,u,v
Inferences on Two Population Proportions:

Now we consider the case where there are two binomial parameters of interest p; and p, and
we wish to draw inferences about these proportions.
Large Sample Test for Ho: p1 = p2

Suppose that the two independent random samples of sizes (n;) and (n,) are taken from two
populations, and let X; and X, represent the number of observations that belong to the class of
interest in the samples. Furthermore, suppose that the normal approximation is applied to each
population so that the estimators of the population proportions:

. X ~ X . o

P, == and P, = —% have approximate normal distributions.
nl r]2

Hypothesis testing procedure:

Null hypothesis: Ho: p1=p2

Test Statistic: Z, =

P,
1

\/ PA- ﬁ)(n + nl]

X, +X,
n, +n,
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Alternative Hypotheses Rejection Criterion
H,:p, #p, Zo>z%orzo<—z%
Hy:p,>Pp, Z,>z,
H,:p, <P, Z,<-z,

- Confidence Interval for p; — p.:
The confidence interval for p; — p, can be found from the statistic:
_ Isl_lsz_(pl_pz)
\/pl(l— P) | P2(1-P,)
nl n 2
which is a standard normal r.v.

The 100%(1 — o) confidence interval on p; — p2 is:

5 b _ pl(l_bl) bz(l_f)z)< _ <P _p pl(l_pl) bz(l_pz)
P,-P, z%\/ 0 + " <p,—-p, <P, P2+z% +
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