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OVERVIEW OF AP CALCULUS 
The Advanced Placement Calculus BCcourse is designed for a full-year, college level course in the calculus of functions of one independent 
variable.  The student will prepare for the College Board AB Advanced Placement Calculus Test. The AP Calculus BC exam will be administered 
on Tuesday, May 15, 2018 at 8:00 am. 
 
The major concepts to be mastered in calculus are functions, graphs, limits, derivatives, definite integral , indefinite integrals and series.  The class is 
designed to ensure the success of all students.  Each student is assigned to a learning team of 4 students.  Learning teams enable the students to 
discuss, refine, and develop the ability to think critically, analyze information, explain their mathematical thinking, and apply the mathematics learned 
to real-world situations.  All grades are based on individual effort and individual work.  Effective teamwork can add bonus points to the student’s 
individual grade.  Additionally, working effectively as a member of a learning team can only enhance the student’s individual learning as immediate 
feedback is provided.   
  
TEXTBOOK: CALCULUS- Graphical, Numerical, Algebraic; Finney, Demana, Waits, Kennedy; Pearson, Prentice Hall 
 
Expectations: Students should always be mindful that optimum learning occurs in an atmosphere of mutual respect and kindness. Integrity is 
developed (or lost) on a day-to-day basis. Talking when someone else has the floor is unacceptable.  Proper classroom behavior leads to success in 
class. You must always be willing to listen to each other, to participate actively, to ask questions, and to help each other when asked. Remember you 
can accomplish much more cooperatively than you can individually. I expect you to follow all rules and procedures as well as the following:  

 You must come to class ON TIME and be ready to work when the bell rings.  

 All electronic devices including, but not limited to cellphone, iPods and headphones are not to be used during classroom 
instruction. Remember there is NO TEXTING AND DERIVING! 

 While I am speaking to the class, I expect you to be listening and not speaking.  

 All assessments must be done in pencil only. Work completed in anything other than a pencil will result in a zero.  

 You must attend to your personal needs between classes. Bathroom passes will be issued on an individual basis and for 
emergences only.  

 All school rules are enforced in this room 
** NO DISRUPTIVE BEHAVIOR OR RUDENESS WILL BE TOLERATED!! 

 
MATERIALS: To be successful in this course, you will need a 2-inch three-ring binder with 12 dividers, pencils with good erasers, lined paper, graph 
paper, and a TI-NSpire CX CAS. There is also a $10.00 AP Math class fee.  
 
GRAPHING CALCULATOR: Students must have access to a graphing calculator at all times. Students are required to have a TI-NSpire CX CAS A 
limited number of calculators are available to borrow from the school. If a student elects to use any other calculator, classroom support will not be 
provided and the student is solely responsible for learning to properly operate the calculator.  
 
STUDENT ASSESMENTS 
Your nine-week grade is determined by combining several assessments including homework, in-class investigations/participation, notebook, 
projects, quizzes and tests. A nine-week grade or final grade will only have a teacher over ride if there is a mistake made. Under no other 
circumstance will an override be made, so do not ask!! The most effective way to raise your average is by being prepared, being positive, and 
being present.  

 
Grading Scale 
100-90  A 
89-80  B 
79-70  C 
69-60  D 
59 and below F 

 
Tests are cumulative throughout the year, although the emphasis of the test is on the most current material. Most tests are written in the AP 
test format; a portion of the test is multiple-choice and a portion of the test is free response. All tests contain both calculator and non-
calculator questions.  For each test the student mean score is calculated and the final grade on the test is determined by equating the mean 
score with the class average and the maximum score with a 99%.  An equation is determined in order to scale all raw scores.  This allows 
challenging problems to be included on the test. Test make-ups can only be made before the scheduled test and not after.  

Category Percent Weighted 

Tests & Projects 55 % 

Quizzes 20 % 

Free Response 10 % 

Homework 10 % 

Participation 5 % 
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Quizzes are typically given once a week and are utilized to help students discover misconceptions in the process.  Most quizzes will be 
timed and without the use of the calculator.  
 
Free-Response quizzes will be given throughout each chapter. The free-response question will be based on the topic learned during the 
chapter. It will be graded and scored similar to the format on the AP test.  
 
Homework/Notes will be given daily. Video lectures will be posted on my website http://teachers.dadeschools.net/lberkson. You must watch 
and take notes on the videos prior to coming to class. Notes should be taken on the PowerPoint PDF slides provided. You will have the 
opportunity to ask questions about the topic when you arrive to class the next day after being assigned the notes.  You will then be expected 
to complete the group work activity on each section.  The amount of effort that you place into understanding the topics and writing your notes 
will translate to a better understanding of each section.   Each student will be responsible for asking his or her team members to explain a 
problem that he or she was unable to do.  If no one on the team is able to explain the problem the team should ask the teacher for 
assistance.  When the teacher finds that several teams are having a difficult time with a specific problem these concerns will be addressed 
with the entire class.  Flipping the classroom will allow us more time on difficult problems and therefore be able to gain and better 
understanding.  All assignments will be due on Quiz and Test days. If you are absent you must send the assignment via Dropbox. No late 
assignments will be tolerated or accepted!  
 
Cheating: Cheating (including copying) will not be tolerated. It will result in a double F on the assignment and a D in conduct for the term. 
Parents will be notified. Additionally, disclosures regarding the academic dishonesty will be made to school award/scholarship committees, 
honor’s societies, etc. Givers and receivers will be equally punished. In order to ensure fairness and exam security, cell phones and other 
internet-enabled devices will be collected prior to assessments. 

PARTICIPATION 
Class participation is crucial to your success. Although this is an AP Calculus class, it is also about working together and learning from each 
other. The best way to learn something is to teach it to someone else. Trying to explain an idea will help you to sort out what you do and 
don’t understand. Participation points can be earned by presenting problems to students. 
 
ATTENDENCE AND MISSED ASSESSMENTS 
Calculus is a difficult subject. Since many topics build on one another, daily participation is a must. Do not get behind in your course work - it 
is almost impossible to catch up; thus any absence, excused or unexcused, will indirectly affect your grade. If you are in any extracurricular 
activities, try your best not to miss class. No teacher has the right to keep you from my class without my permission first. If you must, it 
is your responsibility to make up what you missed. Failure to do so will mean your absence is considered unexcused. Ten or more 
unexcused absences may result in credit for the course being withheld. LATE ASSIGNMENTS will NOT be accepted. If you are absent on 
the day an assignment is due, it is required that you turn in the assignments via a friend, drop it off in my school mailbox, email me photos of 
your assignments, etc. before your class period begins. (I always respond to my email, so if you did not receive a response, I did not get it.) 
Only students with an excused absence will get credit for the assignment; an unexcused absence will result in zero points. I strongly 
suggest that you check my website every school day for the assignments so you do not fall behind. If you are absent for more than 2 
consecutive school days, it is expected that you email me to ascertain your makeup work and schedule.  
 
If you are absent on the day of a quiz, you may come in the following morning before school to make up the quiz. Once the quiz has been 
returned to any of my classes, make-ups will no longer be allowed and your correlating test grade will take place of that quiz grade. All quiz 
make-ups will be in Mrs. Daniel’s room, Room 231. If you are absent for a Free Response Quiz, your next Free Response quiz will be 
counted twice.  Test make-ups will not be allowed. If you are absent on the day of a test, you must email me so we can discuss your options. 
If you do not email me, you will receive zero points for that test. I will always respond to my email, so if you do not receive a response by the 
next morning, I did not get it. You can also text me via the Remind app.  
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Basic Derivatives 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥𝑛𝑛) = 𝑛𝑛𝑥𝑥𝑛𝑛−1 

𝑑𝑑
𝑑𝑑𝑑𝑑

(sin𝑥𝑥) = cos  𝑥𝑥 

𝑑𝑑
𝑑𝑑𝑑𝑑

(cos 𝑥𝑥) = − sin  𝑥𝑥 

𝑑𝑑
𝑑𝑑𝑑𝑑

(tan 𝑥𝑥) = sec2 𝑥𝑥 

𝑑𝑑
𝑑𝑑𝑑𝑑

(cot 𝑥𝑥) = − csc2 𝑥𝑥 

𝑑𝑑
𝑑𝑑𝑑𝑑

(sec𝑥𝑥) = sec 𝑥𝑥 tan 𝑥𝑥 

𝑑𝑑
𝑑𝑑𝑑𝑑

(csc𝑥𝑥) = − csc𝑥𝑥 cot 𝑥𝑥 

𝑑𝑑
𝑑𝑑𝑑𝑑

(ln𝑢𝑢) =
1 
𝑢𝑢

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑒𝑒𝑢𝑢) = 𝑒𝑒𝑢𝑢  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

Where u is a function of x,  
and a is a constant. 

Differentiation Rules 
Chain Rule: 
𝑑𝑑
𝑑𝑑𝑑𝑑

[𝑓𝑓(𝑢𝑢)] = 𝑓𝑓′(𝑢𝑢) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  OR  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
 
Product Rule: 
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑢𝑢𝑢𝑢) = 𝑢𝑢 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+  𝑣𝑣 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  OR 𝑢𝑢 𝑣𝑣′ +  𝑣𝑣 𝑢𝑢′ 
 
Quotient Rule: 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑢𝑢
𝑣𝑣
� =  

𝑣𝑣 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑− 𝑢𝑢𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑣𝑣2

  OR  𝑣𝑣 𝑢𝑢′− 𝑢𝑢 𝑣𝑣′

𝑣𝑣2
 

Intermediate Value Theorem 

If the function 𝑓𝑓(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏], and y is a 
number between 𝑓𝑓(𝑎𝑎) and 𝑓𝑓(𝑏𝑏), then there exists at 
least one number 𝑥𝑥 = 𝑐𝑐 in the open interval (𝑎𝑎, 𝑏𝑏) 
such that 𝑓𝑓(𝑐𝑐) = 𝑦𝑦. 
 

Mean Value Theorem 

If the function 𝑓𝑓(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏], AND  the 
first derivative exists on the interval (𝑎𝑎, 𝑏𝑏) then there 
is at least one number 𝑥𝑥 = 𝑐𝑐 in (𝑎𝑎, 𝑏𝑏) such that 
𝑓𝑓′(𝑐𝑐) =  𝑓𝑓(𝑏𝑏)− 𝑓𝑓(𝑎𝑎)

𝑏𝑏−𝑎𝑎
 . 

Rolle’s Theorem 

If the function 𝑓𝑓(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏], AND  the 
first derivative exists on the interval (𝑎𝑎, 𝑏𝑏) AND 
𝑓𝑓(𝑎𝑎) = 𝑓𝑓(𝑏𝑏),  then there is at least one number 𝑥𝑥 = 𝑐𝑐 
in (𝑎𝑎, 𝑏𝑏) such that 𝑓𝑓′(𝑐𝑐) =  0 . 

Extreme Value Theorem 

If the function 𝑓𝑓(𝑥𝑥) is  
continuous on [𝑎𝑎, 𝑏𝑏],  
then the function is  
guaranteed to have  
an absolute maximum 
 and an absolute  
minimum on the  
interval. 

Alternate Definition of the Derivative: 
 

𝑓𝑓′(𝑐𝑐) = lim
𝑥𝑥 →𝑐𝑐

𝑓𝑓(𝑥𝑥) −  𝑓𝑓(𝑐𝑐)
𝑥𝑥 − 𝑐𝑐

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Curve Sketching And Analysis 

𝑦𝑦 = 𝑓𝑓(𝑥𝑥) must be continuous at each: 

Critical point: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0 or undefined 
LOOK OUT FOR ENDPOINTS 

Local minimum: 
     𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  goes (−, 0, +) or (−,𝑢𝑢𝑢𝑢𝑢𝑢, +)    OR    𝑑𝑑

2𝑦𝑦
𝑑𝑑𝑥𝑥2

> 0 
Local maximum: 
     𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
  goes (+, 0,−) or (+,𝑢𝑢𝑢𝑢𝑢𝑢,−)   OR    𝑑𝑑

2𝑦𝑦
𝑑𝑑𝑥𝑥2

< 0    
 
Point of inflection: concavity changes 
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

  goes from (+, 0,−), (−, 0, +),  (+,𝑢𝑢𝑢𝑢𝑢𝑢,−),  OR  
 (−,𝑢𝑢𝑢𝑢𝑢𝑢, +) 

Derivative of an Inverse Function: 
If f  has an inverse function g then: 

𝑔𝑔′(𝑥𝑥) =  
1

𝑓𝑓′(𝑔𝑔(𝑥𝑥)) 

derivatives are reciprocal slopes 

Implicit Differentiation 

Remember that in implicit differentiation 
you will have a 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 for each y in the original 

function or equation.  Isolate the 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.  If you 

are taking the second derivative 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
 , you 

will often substitute the expression you 
found for the first derivative somewhere 
in the process. 

Average Rate of Change ARoC: 

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠 =  
𝑓𝑓(𝑏𝑏) −  𝑓𝑓(𝑎𝑎)

𝑏𝑏 − 𝑎𝑎
 

Instantaneous Rate of Change IRoC: 

𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑓𝑓′(𝑥𝑥) =  lim
ℎ→0

𝑓𝑓(𝑥𝑥 + ℎ) −  𝑓𝑓(𝑥𝑥)
ℎ

  

Write the equation of a tangent line  
at a point: 

You need a slope (derivative) and a point. 

𝑦𝑦2 −  𝑦𝑦1 = 𝑚𝑚 (𝑥𝑥2 −  𝑥𝑥1) 

First Derivative: 

𝑓𝑓′(𝑥𝑥) > 0 function is increasing. 

𝑓𝑓′(𝑥𝑥) < 0 function is decreasing. 

𝑓𝑓′(𝑥𝑥) = 0 or DNE: Critical Values at x. 

Relative Maximum: 𝑓𝑓 ′(𝑥𝑥) = 0 or DNE and sign of      
 𝑓𝑓′(𝑥𝑥) changes from  + to  − . 

Relative Minimum:  𝑓𝑓 ′(𝑥𝑥) = 0 or DNE and sign of 
 𝑓𝑓′(𝑥𝑥)  changes from − to + .      

Absolute Max or Min: 
MUST CHECK ENDPOINTS ALSO 

 
The maximum value is a y-value. 
 
 

 
Second Derivative: 

𝑓𝑓′′(𝑥𝑥) > 0 function is concave up. 

𝑓𝑓′′(𝑥𝑥) < 0 function is concave down. 

𝑓𝑓′(𝑥𝑥) = 0 and sign of 𝑓𝑓′′(𝑥𝑥) changes, then there is a 
point of inflection at x. 
Relative Maximum: 𝑓𝑓′′(𝑥𝑥) < 0  
Relative Minimum:  𝑓𝑓′′(𝑥𝑥) > 0   
 
 
 
 

 

Horizontal Asymptotes: 

1.  If the largest exponent in the 
numerator is < largest exponent in the 
denominator then lim

𝑥𝑥→±∞
𝑓𝑓(𝑥𝑥) = 0. 

2.  If the largest exponent in the 
numerator is > the largest exponent in the 
denominator then lim

𝑥𝑥→±∞
𝑓𝑓(𝑥𝑥) = 𝐷𝐷𝐷𝐷𝐷𝐷 

3.  If the largest exponent in the 
numerator is = to the largest exponent in 
the denominator then the quotient of the 
leading coefficients is the asymptote. 
lim
𝑥𝑥→±∞

𝑓𝑓(𝑥𝑥) = 𝑎𝑎
𝑏𝑏

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“PLUS A CONSTANT” 
The Fundamental Theorem of Calculus 

�𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑏𝑏) −  𝐹𝐹(𝑎𝑎)
𝑏𝑏

𝑎𝑎

 

Where 𝐹𝐹′(𝑥𝑥) =  𝑓𝑓(𝑥𝑥) 

Corollary to FTC 

𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 =

𝑔𝑔(𝑢𝑢)

𝑎𝑎

𝑓𝑓�𝑔𝑔(𝑢𝑢)�  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

Distance, Velocity, and Acceleration 
 

𝑥𝑥(𝑡𝑡) = position function 
𝑣𝑣(𝑡𝑡) = velocity function 
𝑎𝑎(𝑡𝑡) =acceleration function 
 

The derivative of position (ft) is velocity (ft/sec); 
the derivative of velocity (ft/sec) is acceleration 
(ft/sec2). 
 
The integral of acceleration (ft/sec2) is velocity 
(ft/sec) ; the integral of velocity (ft/sec) is position 
(ft). 

Speed is | velocity | 

If acceleration and velocity have the same sign, 
then the speed is increasing, particle is moving 
right. 

If the acceleration and velocity have different 
signs, then the speed is decreasing, particle is 
moving left. 
 
Displacement = ∫ 𝑣𝑣(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑡𝑡𝑓𝑓

𝑡𝑡0
 

 
Distance  =  ∫ | 𝑣𝑣(𝑡𝑡)|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑑𝑑𝑑𝑑 
 
Average Velocity  

=  
final position− initial position 

total time
=  
Δ𝑥𝑥
Δ𝑡𝑡

 

ONLY FOUR THINGS YOU CAN DO ON A 
CALCULATOR THAT NEEDS NO WORK SHOWN: 

1.  Graphing a function within an arbitrary view 
window. 

2.  Finding the zeros of a function. 
3.  Computing the derivative of a function numerically. 
4.  Computing the definite integral of a function 

numerically. 

LOGARITHMS 
Definition: 

𝑙𝑙𝑙𝑙 𝑁𝑁 = 𝑝𝑝 ↔ 𝑒𝑒𝑝𝑝 = 𝑁𝑁 
𝑙𝑙𝑙𝑙 𝑒𝑒 = 1 
ln 1 = 0 
ln(𝑀𝑀𝑀𝑀) = ln𝑀𝑀 + ln𝑁𝑁 

ln �
𝑀𝑀
𝑁𝑁
� = ln𝑀𝑀 − ln𝑁𝑁 

𝑝𝑝 ∙ ln𝑀𝑀 = ln𝑀𝑀𝑝𝑝 

EXPONENTIAL GROWTH and DECAY: 
 
When you see these words use:  𝑦𝑦 = 𝐶𝐶𝑒𝑒𝑘𝑘𝑘𝑘 

 “y is a differentiable function of t such that 
𝑦𝑦 > 0 and 𝑦𝑦′ =  𝑘𝑘𝑘𝑘 “ 

“the rate of change of y is proportional to y” 

When solving a differential equation: 

1. Separate variables first 

2.  Integrate 

3. Add +C to one side 

4. Use initial conditions to find “C” 
5. Write the equation if the form of 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 

 

The Accumulation Function 

𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑎𝑎) + �𝑓𝑓′(𝑡𝑡) 𝑑𝑑𝑑𝑑

𝑥𝑥

𝑎𝑎

 

The total amount, 𝐹𝐹(𝑥𝑥), at any time 𝑥𝑥 , is the 
 initial amount, 𝑓𝑓 (𝑎𝑎), plus the amount of change 
between 𝑡𝑡 = 𝑎𝑎 and 𝑡𝑡 = 𝑥𝑥,  given by the integral.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean Value Theorem for Integrals: 
The Average Value 

If the function 𝑓𝑓(𝑥𝑥) is continuous on [𝑎𝑎, 𝑏𝑏] and the 
first derivative exists on the interval (𝑎𝑎, 𝑏𝑏), then 
there exists a number 𝑥𝑥 =  𝑐𝑐 on (𝑎𝑎, 𝑏𝑏) such that 

𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 =  
1

𝑏𝑏 − 𝑎𝑎 
 �𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 =  

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎
𝑏𝑏 − 𝑎𝑎

𝑏𝑏

𝑎𝑎

 

This value 𝑓𝑓(𝑐𝑐) is the “average value” of the 
function on the interval [𝑎𝑎, 𝑏𝑏]. 

 

Riemann Sums 

A Riemann Sum means a rectangular 
approximation.  Approximation means that 
you DO NOT EVALUATE THE INTEGRAL; 
you add up the areas of the rectangles.  

 

 
Trapezoidal Rule 

For uneven intervals, may need to 
calculate area of one trapezoid at a time 
and total. 
𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1

2
ℎ[𝑏𝑏1 + 𝑏𝑏2]  

 
For even intervals: 

�𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑑𝑑 
𝑏𝑏

𝑎𝑎

=  
𝑏𝑏 − 𝑎𝑎

2𝑛𝑛
�𝑦𝑦0 + 2𝑦𝑦1 + 2𝑦𝑦2 +  …

+2𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛
� 

 

 
Values of Trigonometric Functions for 

Common Angles 

𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃 

0 0 1 0 

𝜋𝜋
6

 1
2

 √3
2

 
√3
3

 

𝜋𝜋
4

 √2
2

 
√2
2

 1 

𝜋𝜋
3

 √3
2

 
1
2

 √3 

𝜋𝜋
2

 1 0 "∞" 

𝜋𝜋 0 −1 0 

 
Must know both inverse trig and trig values: 

EX.     𝑡𝑡𝑡𝑡𝑡𝑡 𝜋𝜋
4

= 1   and sin−1 �1
2
� = 𝜋𝜋

3
 

ODD and EVEN: 

   sin(−𝑥𝑥) =  − sin 𝑥𝑥 (odd) 

   cos(−𝑥𝑥) = cos 𝑥𝑥  (even) 

Trigonometric Identities 

Pythagorean Identities: 

𝑠𝑠𝑠𝑠𝑛𝑛2𝜃𝜃 + 𝑐𝑐𝑐𝑐𝑠𝑠2𝜃𝜃 = 1  

The other two are easy to derive by dividing 
by sin2 𝜃𝜃 or cos2 𝜃𝜃. 

1 + tan2 𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑐𝑐2𝜃𝜃 

cot2 𝜃𝜃 + 1 = csc2 𝜃𝜃 

Double Angle Formulas: 

sin 2𝑥𝑥 = 2 sin 𝑥𝑥 cos 𝑥𝑥 

cos 2𝑥𝑥 = cos2 𝑥𝑥 − sin2 𝑥𝑥 = 1 − 2 sin2 𝑥𝑥 

Power-Reducing Formulas: 

cos2 𝑥𝑥 =
1
2

(1 + cos 2𝑥𝑥  ) 

sin2 𝑥𝑥 =
1
2

 (1 − cos 2𝑥𝑥) 

Quotient Identities: 
tan𝜃𝜃 =  sin𝜃𝜃

cos𝜃𝜃
       cot 𝜃𝜃 =  cos𝜃𝜃

sin𝜃𝜃
 

Reciprocal Identities:  
𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 = 1

𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥
     or   sin 𝑥𝑥 csc 𝑥𝑥 = 1 

𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 = 1
cos𝑥𝑥

   or   cos 𝑥𝑥 sec𝑥𝑥 = 1 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Area and Solids of Revolution: 

NOTE: (𝒂𝒂,𝒃𝒃) are x-coordinates and  
(𝒄𝒄,𝒅𝒅) are y-coordinates 

Area Between Two Curves: 
Slices ⊥ to x-axis:   𝐴𝐴 =  ∫ [𝑓𝑓(𝑥𝑥) −  𝑔𝑔(𝑥𝑥)] 𝑑𝑑𝑑𝑑 𝑏𝑏

𝑎𝑎  

Slices ⊥ to y-axis:     𝐴𝐴 =  ∫ [𝑓𝑓(𝑦𝑦) −  𝑔𝑔(𝑦𝑦)] 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑐𝑐  

Volume By Disk Method: 

About x-axis: 𝑉𝑉 =  𝜋𝜋 ∫ [𝑅𝑅(𝑥𝑥)]2 𝑑𝑑𝑑𝑑 𝑏𝑏
𝑎𝑎   

About y-axis:  𝑉𝑉 =  𝜋𝜋 ∫ [𝑅𝑅(𝑦𝑦)]2 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑐𝑐  

Volume By Washer Method: 

About x-axis: 𝑉𝑉 =  𝜋𝜋 ∫ ([𝑅𝑅(𝑥𝑥)]2 − [𝑟𝑟(𝑥𝑥)]2) 𝑑𝑑𝑑𝑑 𝑏𝑏
𝑎𝑎   

About y-axis:  𝑉𝑉 =  𝜋𝜋 ∫ ([𝑅𝑅(𝑦𝑦)]2 −  [𝑟𝑟(𝑦𝑦)]2) 𝑑𝑑𝑑𝑑 𝑑𝑑
𝑐𝑐  

Volume By Shell Method: 

About x-axis: 𝑉𝑉 = 2 𝜋𝜋 ∫ 𝑦𝑦 [𝑅𝑅(𝑦𝑦)] 𝑑𝑑𝑑𝑑𝑑𝑑
𝑐𝑐  

About y-axis: 𝑉𝑉 = 2 𝜋𝜋 ∫ 𝑥𝑥 [𝑅𝑅(𝑥𝑥)] 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎  

 

 

General Equations for Known Cross Section 
where base is the distance between the two 

curves and a and b are the limits of 
integration. 

SQUARES:  𝑉𝑉 =  ∫ (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)2 𝑑𝑑𝑑𝑑 𝑏𝑏
𝑎𝑎  

TRIANGLES 
EQUILATERAL: 𝑉𝑉 =  √3

4 ∫ (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)2 𝑑𝑑𝑑𝑑 𝑏𝑏
𝑎𝑎    

ISOSCELES RIGHT:  𝑉𝑉 =  1
4 ∫ (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)2 𝑑𝑑𝑑𝑑 𝑏𝑏

𝑎𝑎  

RECTANGLES: 𝑉𝑉 =  ∫ (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ∙ ℎ 𝑑𝑑𝑑𝑑 𝑏𝑏
𝑎𝑎   

where h is the height of the rectangles. 

SEMI-CIRCLES:  𝑉𝑉 =  𝜋𝜋
2 ∫ (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)2 𝑑𝑑𝑑𝑑 𝑏𝑏

𝑎𝑎   
where radius is ½ distance between the two 
curves. 
 

 

Basic Integrals 

�𝑑𝑑𝑑𝑑 = 𝑢𝑢 + 𝐶𝐶 

�𝑢𝑢𝑛𝑛𝑑𝑑𝑑𝑑 =  
𝑢𝑢𝑛𝑛+1 
𝑛𝑛 + 1

+  𝐶𝐶 𝑛𝑛 ≠  −1 

�
𝑑𝑑𝑑𝑑
𝑢𝑢

= ln| 𝑢𝑢 | +  𝐶𝐶 

�𝑒𝑒𝑢𝑢 𝑑𝑑𝑑𝑑 = 𝑒𝑒𝑢𝑢 +  𝐶𝐶 

�𝑎𝑎𝑢𝑢 𝑑𝑑𝑑𝑑 =  
𝑎𝑎𝑢𝑢

ln 𝑎𝑎 
+  𝐶𝐶  

� sin𝑢𝑢 𝑑𝑑𝑑𝑑 =  − cos𝑢𝑢 + 𝐶𝐶 

� cos𝑢𝑢 𝑑𝑑𝑑𝑑 = sin𝑢𝑢 + 𝐶𝐶 

� tan𝑢𝑢 𝑑𝑑𝑑𝑑 =  − ln|cos𝑢𝑢 +  𝐶𝐶| 

� cot𝑢𝑢 𝑑𝑑𝑑𝑑 = ln|sin𝑢𝑢| +  𝐶𝐶 

� sec𝑢𝑢 𝑑𝑑𝑑𝑑 = ln|sec𝑢𝑢 + tan𝑢𝑢| +  𝐶𝐶 

� csc𝑢𝑢 𝑑𝑑𝑑𝑑 = − ln|csc𝑢𝑢 + cot𝑢𝑢| +  𝐶𝐶 

� sec2 𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑 = tan𝑢𝑢 + 𝐶𝐶 

� csc2 𝑢𝑢 𝑑𝑑𝑑𝑑 =  − cot𝑢𝑢 + 𝐶𝐶 

� sec𝑢𝑢 tan𝑢𝑢 𝑑𝑑𝑑𝑑 = sec𝑢𝑢 + 𝐶𝐶 

� csc𝑢𝑢 cot𝑢𝑢 𝑑𝑑𝑑𝑑 =  − csc𝑢𝑢 + 𝐶𝐶 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

𝒚𝒚 = 𝒙𝒙 𝒚𝒚 = 𝒙𝒙𝟐𝟐 𝒚𝒚 = 𝒙𝒙𝟑𝟑 𝒚𝒚 =  |𝒙𝒙| 

𝒚𝒚 = √𝒙𝒙 𝒚𝒚 =
𝟏𝟏
𝒙𝒙

 𝒚𝒚 = 𝒔𝒔𝒔𝒔𝒔𝒔 𝒙𝒙 𝒚𝒚 =  𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙 

𝒚𝒚 = 𝒆𝒆𝒙𝒙 𝒚𝒚 = 𝒍𝒍𝒍𝒍 𝒙𝒙 𝒚𝒚 =
𝟏𝟏
𝒙𝒙𝟐𝟐

 𝒚𝒚 =  �𝒂𝒂𝟐𝟐 −  𝒙𝒙𝟐𝟐 

MORE DERIVATIVES: 
 

𝑑𝑑
𝑑𝑑𝑑𝑑
�sin−1 𝑢𝑢

𝑎𝑎
� = 1

√𝑎𝑎2− 𝑢𝑢2 
 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  𝑑𝑑
𝑑𝑑𝑑𝑑

[cos−1 𝑥𝑥] = −1
√1− 𝑥𝑥2 

  

𝑑𝑑
𝑑𝑑𝑑𝑑
�tan−1 𝑢𝑢

𝑎𝑎
� =  𝑎𝑎

𝑎𝑎2+𝑢𝑢2
 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  𝑑𝑑
𝑑𝑑𝑑𝑑

 [cot−1 𝑥𝑥] =  −1
1+𝑥𝑥2

  

𝑑𝑑
𝑑𝑑𝑑𝑑
�sec−1 𝑢𝑢

𝑎𝑎
� =  𝑎𝑎

|𝑢𝑢|√𝑢𝑢2− 𝑎𝑎2
 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  𝑑𝑑
𝑑𝑑𝑑𝑑

[csc−1 𝑥𝑥] =  −1
|𝑥𝑥|√𝑥𝑥2− 1

  

𝑑𝑑
𝑑𝑑𝑑𝑑

 (𝑎𝑎𝑢𝑢) = 𝑎𝑎𝑢𝑢 ln𝑎𝑎 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

   𝑑𝑑
𝑑𝑑𝑑𝑑

[log𝑎𝑎 𝑥𝑥] =  1
𝑥𝑥 ln 𝑎𝑎

 

 

 

 
 
 

 
 

MORE INTEGRALS: 
 

�
𝑑𝑑𝑑𝑑

√𝑎𝑎2 −  𝑢𝑢2
=  sin−1

𝑢𝑢
𝑎𝑎

+  𝐶𝐶 

�
𝑑𝑑𝑑𝑑

𝑎𝑎2 +  𝑢𝑢2
=

1
𝑎𝑎

tan−1
𝑢𝑢
𝑎𝑎

+  𝐶𝐶 

�
𝑑𝑑𝑑𝑑

𝑢𝑢 √𝑢𝑢2 −  𝑎𝑎2
=

1
𝑎𝑎

sec−1
|𝑢𝑢|
𝑎𝑎

+  𝐶𝐶 

 

 

 
 
 

 
 

−1 1

−1

1

x

y



Extrema, Increasing/Decreasing Functions, the First Derivative Test and the 

Second Derivative Test 

 
Finding Extrema on a Closed Interval [a,b] 

 

1) Find the critical numbers of f(x). 

2) Evaluate f(x) at each critical number. 

3) Evaluate f(x) at the endpoints. 

4) The least value is a minimum.  The greatest value is the maximum. 

 

Determining if f(x) is Increasing or Decreasing on (a,b) 

 

1) Find the critical numbers of f(x). 

2) Determine the intervals of f(x) to test. 

3) Determine the sign of f'(x) at one value in the intervals. 

4) If f'(x) > 0, then f(x) is increasing on the interval (a,b). 

5) If f'(x) < 0, then f(x) is decreasing on the interval (a,b). 

6) If f'(x) = 0, then f(x) is constant on (a,b). 

 

 

The First Derivative Test (c is a critical number of f(x)) 

 

1) If f'(x) changes from negative to positive at c, then f(c) is a relative (local) minimum of f(x) 

2) If f'(x) changes from positive to negative at c, then f(c) is a relative (local) maximum of f(x). 

 

 

 

 

 

 

 

 

 

 

 

Definition of Concavity 

 

1) f(x) is concave upward if f'(x) is increasing on the interval I. 

2) f(x) is concave downward if f'(x) is decreasing on the interval I. 

 

 

 

 

 

 

 

 

 

 

 

 



Determining if f(x) is Concave Up or Down 

 

1) Find f''(x) and locate the points at which f''(x) = 0 or is undefined. 

2) Use the points found in #1 to determine your test intervals. 

3) Evaluate one test point from each of your intervals. 

4) If f''(x) > 0, then f(x) is concave up on the interval. 

5) If f''(x) < 0, then f(x) is concave down on the interval. 

 

 

 

Points of Inflection 

 

Points of inflection occur when the graph of f(x) changes from concave up to concave down 

(or vice versa).  Points of inflection only occur at values where f''(x) = 0 or is undefined. 

NOTE: not all values of f''(x) = 0/undefined are points of inflection, therefore we must 

always check these points. 

 

 

 

 

 

 

 

 

 

 

 

Second Derivative Test (c is a critical number) 

 

1) Find the critical numbers of f(x) {f'(x) = 0 or undefined}. 

2) If f''(c) > 0, then f(c) is a relative minimum because f(c) is concave up. 

3) If f''(c) < 0, then f(c) is a relative maximum because f(c) is concave down. 

4) If f''(c) = 0, then the test fails.  Use the first derivative test. 

  



	
	
	

10	Things	to	know	for	the	Free	Response	Questions	
(And	Mrs.	Berkson’s	Tests)	

	
1. You	will	be	given	6	Free	Response	questions.	For	two	questions	you	are	

allowed	to	use	the	graphing	calculator	and	for	the	remaining	four	there	is	no	
calculator	allowed.	Each	Free	Response	Question	is	worth	9	points.	Not	all	
parts	are	weighted	equally.		

2. Always	round	to	4	decimal	places.	(AP	only	requires	3	but	4	will	always	get	
you	points).	

3. No	simplification	is	needed;	 e0  4  6 is	okay!	If	you	simply	and	you	simplify	
wrong	you	will	be	awarded	no	points!		

4. If	you	think	it,	write	it.	Never	give	a	bald	answer	without	any	supporting	
work.	If	just	the	answer	were	okay	then	it	would	be	a	multiple‐choice	
question,	not	free	response.		

5. Answer	the	question;	don’t	say	too	much.	If	you	say	something	correctly	and	
then	begin	to	say	additional	wrong	information	you	will	lose	points.		

6. Never	erase.	Graders	are	trained	to	ignore	crossed	out	work.		
7. Always	bring	the	problem	back	to	Calculus.	Never	use	“it”	or	“the	function”	

when	justifying	an	answer.	You	must	use	the	name	of	the	function	you	are	
describing.	Calculus	always	gives	you	the	points.	Pre‐Calculus	will	sometimes	
give	you	the	points.		
Ex.	 f ' (x) is	positive	(Calculus)	vs.		
							 f (x) 	is	increasing	(Pre‐Calculus)	

8. Don’t	use	calculator	syntax.	If	you	use	your	calculator,	describe	it	clearly	in	
math	terms,	not	in	calculator	terms.		

9. Watch	for	linkage	issues.	Use	arrows	instead	of	equal	signs.		
10. Don’t	write	 f (x)  2(1.5) 3when	you	mean f (1.5)  2(1.5) 3 .	

	



AP Calculus – Final Review Sheet 
 
 
When you see the words ….        This is what you think of doing 
1.  Find the zeros 
 

Set function = 0, factor or use quadratic equation if 
quadratic, graph to find zeros on calculator 

2.  Find equation of the line tangent to ( )xf  on [ ]ba,
  

Take derivative - ( ) maf =′  and use  
( )11 xxmyy −=−  

3.  Find equation of the line normal to ( )xf  on [ ]ba,  Same as above but ( )af
m

′
−

=
1  

4.  Show that ( )xf  is even Show that ( ) ( )xfxf =−  - symmetric to y-axis 
 

5.  Show that ( )xf  is odd Show that ( ) ( )xfxf −=−  - symmetric to origin 
 

6.  Find the interval where ( )xf  is increasing Find ( )xf ′ , set both numerator and denominator to 
zero to find critical points, make sign chart of ( )xf ′  
and determine where it is positive. 

7.  Find  interval where the slope of ( )xf  is increasing Find the derivative of ( ) ( )xfxf ′′=′ , set both 
numerator and denominator to zero to find critical 
points, make sign chart of ( )xf ′′  and determine where 
it is positive. 

8.  Find the minimum value of a function Make a sign chart of ( )xf ′ , find all relative minimums 
and plug those values back into ( )xf  and choose the 
smallest. 

9.  Find the minimum slope of a function Make a sign chart of the derivative of ( ) ( )xfxf ′′=′ , 
find all relative minimums and plug those values back 
into ( )xf ′  and choose the smallest. 

10.  Find critical values Express ( )xf ′  as a fraction and set both numerator 
and denominator equal to zero. 

11.  Find inflection points Express ( )xf ′′  as a fraction and set both numerator 
and denominator equal to zero. Make sign chart of  

( )xf ′′  to find where ( )xf ′′  changes sign. (+ to – or – 
to +) 

12. Show that ( )xf
ax→

lim  exists Show that 
    

 

lim
x→a−

f x( )= lim
x→a+

f x( ) 

13. Show that ( )xf  is continuous Show that 1) ( )xf
ax→

lim  exists   (
    

 

lim
x→a−

f x( )= lim
x→a+

f x( )) 

                 2) ( )af  exists 
                 3)  ( ) ( )afxf

ax
=

→
lim  

14. Find vertical asymptotes of ( )xf  Do all factor/cancel of ( )xf  and set denominator = 0 
 

15. Find horizontal asymptotes of ( )xf  Find ( )xf
x ∞→
lim  and ( )xf

x −∞→
lim  

 
16. Find the average rate of change of ( )xf  on [ ]ba,  Find ( ) ( )

ab
afbf

−
−  

17. Find instantaneous rate of change of ( )xf  at a Find ( )af ′  



18. Find the average value of ( )xf  on [ ]ba,  

Find 
( )

b-a

dxxf
b

a
∫  

 

19. Find the absolute maximum of ( )xf  on [ ]ba,  Make a sign chart of ( )xf ′ , find all relative 
maximums and plug those values back into ( )xf  as 
well as finding ( )af and ( )bf  and choose the largest. 

20. Show that a piecewise function is differentiable 
            at the point a where the function rule splits 

First, be sure that the function is continuous at ax = . 
Take the derivative of each piece and show that  

( ) ( )xfxf
axax

′=′
+→→ −

limlim  

21. Given ( )ts  (position function), find ( )tv  Find ( ) ( )tstv ′=  
22. Given ( )tv , find how far a particle travels on [ ]ba,  

Find ( )∫
b

a

dttv  

23.  Find the average velocity of a particle on [ ]ba,  

Find 
    

 

v t( )
a

b

∫  dt

b− a
=

s b( )− s a( )
b− a

 

24.  Given ( )tv , determine if a particle is speeding up 
       at   

 

t = k  
Find ( )kv and ( )ka . Multiply their signs. If both 
positive, the particle is speeding up, if different signs, 
then the particle is slowing down. 

25.  Given ( )tv  and ( )0s , find ( )ts  
    

 

s t( )= v t( )∫  dt + C    Plug in t = 0 to find C 
26.  Show that Rolle’s Theorem holds on [ ]ba,  Show that f is continuous and differentiable on the 

interval. If   

 

f a( )= f b( ), then find some c in     

 

a,b[ ] 

such that     

 

′ f c( )= 0. 
27.  Show that  Mean Value Theorem holds on [ ]ba,  Show that f is continuous and differentiable on the 

interval. Then find some c such that 

    

 

′ f c( )=
f b( )− f a( )

b − a
. 

28.  Find domain of ( )xf  Assume domain is   

 

−∞,∞( ). Restrictable domains: 
denominators ≠ 0, square roots of only non negative 
numbers, log or ln of only positive numbers. 

29.  Find range of ( )xf  on [ ]ba,  Use max/min techniques to rind relative max/mins. 
Then examine     

 

f a( ), f b( ) 
30.  Find range of  ( )xf  on ( )∞∞− ,  Use max/min techniques to rind relative max/mins. 

Then examine 
    

 

lim
x→±∞

f x( ). 

31. Find ( )xf ′  by definition 

    

 

′ f x( )= lim
h→0

f x + h( )− f x( )
h

 or

′ f x( )= lim
x →a

f x( )− f a( )
x − a

 

32. Find derivative of inverse  to ( )xf  at ax =  Interchange x with y. Solve for 
dx
dy implicitly (in terms 

of y). Plug your x value into the inverse relation and 

solve for y. Finally, plug that y into your 
dx
dy . 



33.  y is increasing proportionally to y  ky
dt
dy

=  translating to ktCey =  

34. Find the line cx = that divides the area under  
      ( )xf  on [ ]ba,  to two equal areas ( ) ( )dxxfdxxf

b

c

c

a
∫∫ =  

35.  ( ) =∫ dttf
dx
d x

a

  
 
2nd FTC: Answer is ( )xf  

36. 
    

 

d
dx

f t( )
a

u

∫  dt  
 

2nd FTC: Answer is ( )
dx
duuf  

37. The rate of change of population is … 
...=

dt
dP  

38.  The line bmxy +=  is tangent to ( )xf  at ( )11 , yx  Two relationships are true. The two functions share 
the same slope ( ( )xfm ′= ) and share the same y value 
at 1x . 

39. Find area using left Riemann sums [ ]1210 ... −++++= nxxxxbaseA  
 

40. Find area using right Riemann sums [ ]nxxxxbaseA ++++= ...321  
 

41. Find area using midpoint rectangles Typically done with a table of values. Be sure to use 
only values that are given. If you are given 6 sets of 
points, you can only do 3 midpoint rectangles. 

42. Find area using trapezoids [ ]nn xxxxxbaseA +++++= −1210 2...22
2

 

This formula only works when the base is the same. If 
not, you have to do individual trapezoids. 

43. Solve the differential equation … Separate the variables – x on one side, y on the other. 
The dx and dy must all be upstairs. 

44. Meaning of ( )dttf
x

a
∫   

The accumulation function – accumulated area under 
the function ( )xf  starting at some constant a and 
ending at x. 

45. Given a base, cross sections perpendicular to the 
      x-axis are squares 

The area between the curves typically is the base of 

your square. So the volume is ( )dxbase
b

a
∫ 2  

46. Find where the tangent line to ( )xf  is horizontal Write ( )xf ′  as a fraction. Set the numerator equal to 
zero. 
 

47. Find where the tangent line to ( )xf  is vertical Write ( )xf ′  as a fraction. Set the denominator equal 
to zero. 
 

48. Find the minimum acceleration given ( )tv  First find the acceleration ( ) ( )tvta ′= . Then minimize 
the acceleration by examining ( )ta′ . 

49. Approximate the value of ( )1.0f  by using the  
      tangent line to f at 0=x  

Find the equation of the tangent line to f using 
( )11 xxmyy −=−  where ( )0fm ′=  and the point is 

( )( )0,0 f . Then plug in 0.1 into this line being sure to 
use an approximate ( )≈ sign. 



50. Given the value of ( )aF  and the fact that the anti- 
      derivative of f is F, find ( )bF 1 

Usually, this problem contains an antiderivative you 
cannot take. Utilize the fact that if ( )xF is the 

antiderivative of f, then ( ) ( ) ( )aFbFdxxF
b

a

−=∫ . So 

solve for ( )bF  using the calculator to find the definite 
integral. 

51. Find the derivative of ( )( )xgf  ( )( ) ( )xgxgf ′⋅′  
 

52.  Given ( )dxxf
b

a

 ∫ , find ( )[ ]dxkxf
b

a

 ∫ +  
 

( )[ ] ( ) dxkdxxfdxkxf
b

a

b

a

b

a
∫∫∫ +=+   

53. Given a picture of ( )xf ′ , find where ( )xf  is  
      increasing 

Make a sign chart of ( )xf ′  and determine where 
( )xf ′  is positive. 

54. Given ( )tv  and ( )0s , find the greatest distance  
      from the origin of a particle on [ ]ba,  

Generate a sign chart of ( )tv  to find turning points. 
Then integrate ( )tv  using ( )0s  to find the constant to 
find ( )ts . Finally, find s(all turning points) which will 
give you the distance from your starting point. Adjust 
for the origin. 

55.  Given a water tank with g gallons initially being 
        filled at the rate of ( )tF  gallons/min and emptied 
       at the rate of ( )tE  gallons/min on [ ]21 , tt , find  
       a) the amount of water in the tank at m minutes 

 

( ) ( )( )dttEtFg
t

t
∫ −+
2

 

56.  b) the rate the water amount is changing at m 
 ( ) ( )( ) ( ) ( )mEmFdttEtF

dt
d m

t

−=−∫  

57.  c) the time when the water is at a minimum ( ) ( )mEmF − =0, testing the endpoints as well. 
 

58.   Given a chart of x and ( )xf  on selected values  
            between a and b, estimate ( )cf ′  where c is  
            between a and b. 

Straddle c, using a value k greater than c and a value h 

less than c. so ( ) ( ) ( )
hk

hfkfcf
−
−

≈′  

 

59.  Given 
dx
dy , draw a slope field Use the given points and plug them into 

dx
dy , drawing 

little lines with the indicated slopes at the points. 
60. Find the area between curves ( ) ( )xgxf ,  on [ ]ba,  

( ) ( )[ ]dxxgxfA
b

a
∫ −= , assuming that the f curve is 

above the g curve. 
 

61. Find the volume if the area between ( ) ( )xgxf ,  is  
      rotated about the x-axis ( )( ) ( )( )2 2

b

a

V f x g x dxπ  = −
 ∫  assuming that the f 

curve is above the g curve. 
 



BC Problems 
 

62.  Find 

 

lim
x →∞

f (x)
g(x)

 if  

 

lim
x →∞

f (x) = lim
x →∞

g(x) = 0 Use L’Hopital’s Rule. 
 
 

63.  Find 

 

f (x)
0

∞∫  dx  

    

 

lim
h→∞

f x( )
0

h

∫  dx 

 
 

64.  

 

dP
dt

=
k
M

P(M − P)   or  

 

dP
dt

= kP 1−
P
M

 
 
 

 
 
  

Signals logistic growth.  

    

 

lim
t →∞

dP
dt

= 0 ⇒ M = P 

 

65.  Find  
    

 

dx
x2 + ax+ b∫  where     

 

x2 + ax+ b 

       factors 

Factor denominator and use Heaviside partial fraction 
technique. 
 

66.  The position vector of a particle moving 
      in the plane is     

 

r (t ) = x(t ), y(t )  
        a)  Find the velocity. 

 

    

 

v(t ) = ′ x (t ), ′ y (t )  
 

67.  b)  Find the acceleration. 
    

 

a(t ) = ′ ′ x (t ), ′ ′ y (t )  
 

68.  c)  Find the speed. 
    

 

v(t ) = ′ x (t )[ ]2
+ ′ y (t )[ ]2

 
 

69.  a)  Given the velocity vector    
                

 

v(t ) = x(t ), y(t )      
        and position at time 0, find the position   
        vector. 

    

 

s(t ) = x t( )∫  dt + y t( )∫  dt + C 

Use     

 

s 0( ) to find C, remembering it is a vector. 
 

70.  b)  When does the particle stop? 
    

 

v(t ) = 0 → x t( )= 0 AND y t( )= 0 
 

71.  c)  Find the slope of the tangent line to  
            the vector  at     

 

t1. 
This is the acceleration vector at     

 

t1. 
 

72.  Find the area inside the polar curve  
       

 

r = f (θ). 
    

 

A =
1
2

f θ( )[ ]2

θ1

θ 2

∫ dθ  

 
73.  Find the slope of the tangent line to the  
          polar curve 

 

r = f (θ). 

    

 

x = r cosθ, y = r sinθ ⇒
dy
dx

=

dy
dθ
dx
dθ

 

 
74.  Use Euler’s method to approximate 

 

f (1.2)  given        
  

 

dy
dx

, 

 

x0,y0( )= (1,1) , and 

 

∆x = 0.1 

    

 

dy =
dy
dx

∆x( ), ynew = yold + dy  

 

75.  Is the Euler’s approximation an     
        underestimate or  an overestimate? Look at sign of 

    

 

dy
dx

 and d
2y

dx2  in the interval. This gives you 

increasing.decreasing/concavity. Draw picture to ascertain 



answer. 
76.  Find   

 

xneaxdx∫  where a, n are integers Integration by parts,     

 

u dv∫ = uv− v du∫ + C  
 
 

77.  Write a series for     

 

xn cosx where n is an  
        integer     

 

cosx =1−
x2

2 !
+

x4

4 !
−

x6

6 !
+ ... 

Multiply each term by   

 

xn 
 

78.  Write a series for 

 

ln(1+ x)  centered at  
      

 

x = 0. 
Find Maclaurin polynomial: 

    

 

Pn x( )= f 0( )+ ′ f 0( )x +
′ ′ f 0( )
2 !

x2 +
′ ′ ′ f 0( )
3 !

x3 +…+
f n( ) 0( )

n !
xn 

 

79.  

 

1
n p

n=1

∞

∑   converges if….. 
 
    

 

p >1 
 

80.  If 

 

f (x) = 2 + 6x +18x 2 + 54x 3 + ..., find 

 

f −
1
2

 
 
 

 
 
  

Plug in and factor. This will be a geometric series: 

    

 

ar n

n=0

∞

∑ =
a

1− r
 

 
81.  Find the interval of convergence of a  
       series. 

Use a test (usually the ratio) to find the interval and then test 
convergence at the endpoints. 
 

82.  Let 

 

S4 be the sum of the first 4 terms of an 
       alternating series for 

 

f (x). Approximate  
       

 

f (x) − S4  

This is the error for the 4th term of an alternating series which 
is simply the 5th term. It will be positive since you are looking 
for an absolute value.  
 

83.  Suppose 

 

f (n )(x) =
(n +1)  n!

2n . Write the    

        first four terms and the general term of a    
        series for 

 

f (x)   centered at   

 

x = c 

You are being given a formula for the derivative of 

 

f (x) . 

    

 

f x( )= f c( )+ ′ f c( ) x − c( )+
′ ′ f c( )
2 !

x − c( )2
+…+

f n( ) c( )
n !

x − c( )n
 

 
84. Given a Taylor series, find the Lagrange 
      form of the remainder for the nth term 
      where n is an integer at x = c. 

You need to determine the largest value of the 5th derivative of 
f at some value of z. Usually you are told this. Then: 

    

 

Rn x( )=
f n+1( ) z( )
n +1( ) !

x − c( )n+1
 

85. 
    

 

f x( )=1+ x +
x2

2!
+

x3

3!
+ ... 

 

  

 

f x( )= ex 

86. 
    

 

f x( )= x −
x3

3 !
+

x5

5 !
+ ...+

−1( )n
x2n+1

2n +1( ) !
+ ...     

 

f x( )= sinx 

87. 
    

 

f x( )=1−
x2

2 !
+

x4

4 !
−

x6

6 !
+ ...+

−1( )n
x2n

2n( ) !
+ ...     

 

f x( )= cosx  

88. Find     

 

sinx( )∫ m
cosx( )n

dx where m and n   
      are integers 

If m is odd and positive, save a sine and convert everything 
else to cosine. The sine will be the du. If n is odd and positive, 
save a cosine and convert everything else to sine. The cosine 
will be the du. Otherwise use the fact that: 



    

 

sin2 x =
1− cos2x

2
   and   cos2 x =

1+ cos2x
2

 

89.  Given 
    

 

x = f t( ), y = g t( ),  find dy
dx

 

 
  

 

dy
dx

=

dy
dt
dx
dt

 

90.  Given 
    

 

x = f t( ), y = g t( ),  find d 2 y
dx2  

 

    

 

d 2 y
dx2 =

d
dx

dy
dx

 

 
 

 

 
 =

d
dt

dy
dx

 

 
 

 

 
 

dx
dt

 

91. Given   

 

f x( ), find arc length on     

 

a,b[ ] 
     

 

L = 1+ ′ f x( )[ ]2

a

b

∫ dx  

92.     

 

x = f t( ), y = g t( ), find arc length on 

         

 

t1,t2[ ] 
 

    

 

L =
dx
dt

 

 
 

 

 
 

2

+
dy
dt

 

 
 

 

 
 

2

t1

t2

∫ dt  

93. Find horizontal tangents to a polar curve   
        

 

r = f θ( )     

 

x = r cosθ, y = r sinθ
Find where r sinθ = 0 where  r cosθ ≠ 0

 

 
94. Find vertical tangents to a polar curve  
        

 

r = f θ( )     

 

x = r cosθ, y = r sinθ
Find where r cosθ = 0 where  r sinθ ≠ 0

 

 
 

95. Find the volume when the area between  
          

 

y = f x( ), x = 0, y = 0 is rotated about the  
       y-axis. 

Shell method: 
    

 

V = 2π radius ⋅ height dx
0

b

∫  where b is the root. 

96. Given a set of points, estimate the volume  
      under the curve using Simpson’s rule on 
         

 

a,b[ ].     

 

A ≈
b − a
3n

y0 + 4y1 + 2y2 + 4y3 + 2y4 + ...+ 4yn−1 + yn[ ] 

97.  Find the dot product:     

 

u1,u2 ⋅ v1,v2      

 

u1, u2 ⋅ v1,v2 = u1v1 + u2v2  
98.  Multiply two vectors: You get a scalar. 
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2.1 Rates of Change and Limits

Objectives: •Calculate average and instantaneous speeds

•Define and calculate limits for function values 
and apply the properties of limits

•Use the Sandwich Theorem to find certain 
limits indirectly. 

Suppose you drive 200 miles, and it takes you 4 hours.

distance
average speed    

elapsed time

x
t


 



If you look at your speedometer during this trip, it might 
read 65 mph.  This is your instantaneous speed.



A rock falls from a high cliff.  

The position of the rock is given by: 216y t

After 2 seconds:

average speed:

What is the instantaneous speed at 2 seconds?


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instantaneous

yV
t





for some very small 
change in t

   2 2
16 2 16 2h

h
 



where h = some very 
small change in t

We can use the TI-Nspire to evaluate this expression for 
smaller and smaller values of h.



instantaneous

yV
t





   2 2
16 2 16 2h

h
 



h y
t




1 80

0.1 65.6

.01 64.16

.001 64.016

.0001 64.0016

.00001 64.0002

We can see that the velocity 
approaches 64 ft/sec as h becomes 
very small.  

We say that the velocity has a limiting 
value of 64 as h approaches zero.

(Note that h never actually becomes 
zero.)



 2

0

16 2 64
lim
h

h
h

 The limit as h
approaches zero:


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Consider:
sin xy

x


What happens as x approaches zero?

Graphically:



Looks like y=1

Limit notation:  lim
x c

f x L




“The limit of  f of x as x approaches c is L.”

So:
0

sin
lim 1
x

x
x





The limit of a function refers to the value that the 
function approaches, not the actual value (if any).

 
2

lim
x

f x





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Properties of Limits:

Limits can be added, subtracted, multiplied, multiplied 
by a constant, divided, and raised to a power.

(See page 58 for details.)

For a limit to exist, the function must approach the 
same value from both sides.

One-sided limits approach from either the left or right side only.



1 2 3 4

1

2

At x=1:  
1

lim
x

f x




 
1

lim
x

f x




 1f 

left hand limit

right hand limit

value of the function



At x=2:  
2

lim
x

f x




 
2

lim
x

f x




 2f 



1 2 3 4

1

2

At x=3:  
3

lim
x

f x




 
3

lim
x

f x




 3f 
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“Step functions” are sometimes used to describe real-life 
situations.

Our book refers to one such function: int( )y x

This is the Greatest Integer Function.

The TI-89 contains the command           , but it is 
important that you understand the function rather 
than just entering it in your calculator.

int( )x



Greatest Integer Function:

greatest integer that is xy  

The greatest integer function is 
also called the floor function.

The notation for the floor function 
is:

y x   

We will not use these notations.

Some books use             or              . y x  y x

x y

0 0
0.5 1

0.75 1
1 1

1.5 2
2 2

Least Integer Function:

least integer that is xy  
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

The least integer function is also 
called the ceiling function.

The notation for the ceiling 
function is:

y x   

Least Integer Function:

least integer that is xy  

Don’t worry, there are 
not wall functions, front 
door functions, fireplace 
functions!

The Sandwich Theorem:

     
     

If  for all  in some interval about 

and lim lim , then lim .
x c x c x c

g x f x h x x c c

g x h x L f x L
  

  

  

Show that: 2

0

1
lim sin 0
x

x
x

   
 

The maximum value of sine is 1, so 2 21
sinx x

x
   
 

The minimum value of sine is -1, so 2 21
sinx x

x
    
 

So: 2 2 21
sinx x x

x
    
 



2 2 2

0 0 0

1
lim lim sin lim
x x x

x x x
x  

    
 

2

0

1
0 lim sin 0

x
x

x

   
 

2

0

1
lim sin 0
x

x
x

   
 

By the sandwich theorem:


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2.2 Limits Involving Infinity

Objectives: •Find and verify end behavior models for various 
functions

•Calculate limits as                  and to identify 
vertical and horizontal asymptotes. 

x 

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 1 2 3 4

  1f x
x



1
lim 0
x x



As the denominator gets larger, the value of the fraction 
gets smaller.

There is a horizontal asymptote if:

 lim
x

f x b


 or  lim
x

f x b





2
lim

1x

x
x 

Example 1:

2
lim
x

x
x



This number becomes insignificant as               .x 

lim
x

x
x

 1

 There is a horizontal asymptote at 1.


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-2
-10

1
2

-12 -10 -8 -6 -4 -2 2 4 6 8 10 12

  sin xf x
x


Example 2:



sin
lim
x

x
x

Find:

When we graph this 
function, the limit appears 
to be zero.1 sin 1x  

so for            :0x  1 sin 1x
x x x


 

1 sin 1
lim lim lim
x x x

x
x x x  


 

sin
0 lim 0

x

x
x

 

by the sandwich 
theorem:

sin
lim 0
x

x
x



Example 3: 5 sin
lim
x

x x
x


Find:



Infinite Limits:

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 1 2 3 4

  1f x
x



0

1
lim
x x

 

As the denominator approaches 
zero, the value of the fraction gets 
very large.

If the denominator is positive then the 
fraction is positive.

0

1
lim
x x

 If the denominator is negative then 
the fraction is negative.

vertical 
asymptote 
at  x=0.


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Example 4:

20

1
lim
x x

 



20

1
lim
x x

 

The denominator is positive 
in both cases, so the limit is 
the same.

20

1
 lim

x x
  

End Behavior Models:

End behavior models model the behavior of a function as 
x approaches infinity or negative infinity.

A function g is:

a right end behavior model for f if and only if
 
 

lim 1
x

f x
g x



a left end behavior model for f if and only if
 
 

lim 1
x

f x
g x





Test of
model

Our model
is correct.

  xf x x e Example 7:

As             ,         approaches zero.x  xe
(The x term dominates.)

  g x x  becomes a right-end behavior model.

lim
x

x

x e
x






lim1

x

x

e
x




  1 0  1

  xh x e  becomes a left-end behavior model.

lim
x

xx

x e
e





 lim 1xx

x
e

  0 1  1

As              ,        increases faster than x decreases,x  xe

therefore        is dominant.
xe



Test of
model

Our model
is correct.
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  xf x x e Example 7:

  g x x  becomes a right-end behavior model.

  xh x e  becomes a left-end behavior model.

On your calculator, graph:

1

2

3

x

x

y x

y e

y x e









 

10 10x  

1 9y  

Use:



 
5 4 2

2

2 1

3 5 7

x x xf x
x x
  


 

Example 7:



Often you can just “think through” limits.

1
lim  sin
x x

 
 
 


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2.3 Continuity

Objectives: •Identify the intervals upon which a given 
function is continuous and understand the 
meaning of a continuous function.

•Remove discontinuities by extending or 
modifying a function.

•Apply the Intermediate Value Theorem and the 
properties of algebraic combinations and 
composites of continuous functions. 

Most of the techniques of calculus require that functions 
be continuous.  A function is continuous if you can draw it 
in one motion without picking up your pencil.



A function is continuous at a point if the limit is the same 
as the value of the function.

1 2 3 4

1

2

jump infinite oscillating

Essential Discontinuities:

Removable Discontinuities:

(You can fill the hole.)


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Removing a discontinuity:

 
3

2

1

1

xf x
x





3

21

1
lim  

1x

x
x




Removing a discontinuity:

 

3

2

1
,   1

1
3

,    1
2

x x
xf x

x

 
  

 


Note: There is another 
discontinuity at              that can 
not be removed.

1x  

-5

-4

-3

-2

-1
0

1

2

3

4

5

-5 -4 -3 -2 -1 1 2 3 4 5



Continuous functions can be added, subtracted, multiplied, 
divided and multiplied by a constant, and the new function 
remains continuous.

Also:   Composites of continuous functions are continuous.

examples:  2siny x cosy x


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Intermediate Value Theorem

If a function is continuous between a and b, then it takes 

on every value between            and            . f a  f b

a b

 f a

 f b
Because the function is 
continuous, it must take on 
every y value between         
and .

 f a
 f b



Example 5: Is any real number exactly one less than its cube?

(Note that this doesn’t ask what the number is, only if it exists.)



2.4 Rates of Change and Tangents Lines

Objectives: •Apply directly the definition of slope of a curve in 
order to calculate slopes.

•Find the equations of the tangent line and 
normal line to a curve at a given point.

•Find the average rate of change of a function. 
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The slope of a line is given by:
ym
x



 x

y

The slope at (1,1) can be approximated by 
the slope of the secant through (4,16).

y
x




We could get a better approximation if we 
move the point closer to (1,1).     ie: (3,9)

y
x




Even better would be the point (2,4).

y
x




  2f x x

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4



The slope of a line is given by:
ym
x



 x

y

If we got really close to (1,1), say (1.1,1.21), 
the approximation would get better still

y
x




How far can we go?

  2f x x

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4



1

1 1 h

 1f h

h

slope
y
x





slope at  1,1

The slope of the curve                  at the point                     is: y f x   ,P a f a

   
0

lim  
h

f a h f a
m

h

 



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The slope of the curve                  at the point                     is: y f x   ,P a f a

   
0

lim  
h

f a h f a
m

h

 


   f a h f a
h

 
is called the difference quotient of f at a.

If you are asked to find the slope using the definition or using 
the difference quotient, this is the technique you will use.



In the previous example, the tangent line could be found 

using                                . 1 1y y m x x  

The slope of a curve at a point is the same as the slope of 

the tangent line at that point.

If you want the normal line, use the negative reciprocal of 

the slope. (in this case,        )1

2


(The normal line is perpendicular.)



Example 4:

a Find the slope at          .x a

   
0

lim  
h

f a h f a
m

h

 


Let   1f x
x




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Example 4:

b Where is the slope          ?
1

4


Let   1f x
x





Review:

average slope:
ym
x





slope at a point:
   

0
lim  
h

f a h f a
m

h

 


average velocity: ave

total distance

total time
V 

instantaneous velocity:

   
0

lim  
h

f t h f t
V

h

 


If           is the position function: f t

These are 
often 
mixed up 
by 
Calculus 
students!

So are these!

velocity = slope

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3.1 Derivative of a Function

Objectives: •Calculate slopes and derivatives using the 
definition of the derivative.

•Graph f from the graph of f’, graph f’ from the 
graph of f, and graph the derivative of a function 
given numerically with data. 

   
0

lim
h

f a h f a
h

 
is called the derivative of     at     .f a

We write:      
0

lim
h

f a h f a
f x

h

 
 

“The derivative of f with respect to x is …”

There are many ways to write the derivative of  y f x



See pg. 99 and 100 for alternate definitions of derivatives.

 f x “f prime x” or “the derivative of f with respect 
to x”

y “y prime”

dy
dx

“dee why dee ecks” or “the derivative of y with 
respect to x”

df
dx

“dee eff dee ecks” or “the derivative of f with 
respect to x”

 d f x
dx “dee dee ecks uv eff uv ecks” or “the derivative 

of f of x”
(   of   of   )d dx f x

See pg. 101 for uses of each notation
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0

1

2

3

4

1 2 3 4 5 6 7 8 9

 y f x

-2

-1

0

1

2

3

1 2 3 4 5 6 7 8 9

 y f x

The derivative 
is the slope of 
the original 
function.

The derivative is defined at the end points 
of a function on a closed interval.



-3

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 1 2 3
x

2 3y x 

   2 2

0

3 3
lim
h

x h x
y

h

   
 

2 2 2

0

2
lim
h

x xh h xy
h

   

2y x 
-6

-5

-4

-3

-2

-1
0

1

2

3

4

5

6

-3 -2 -1 1 2 3x

0
lim 2
h

y x h


  
0



A function is differentiable if it has a 
derivative everywhere in its domain.  It 
must be continuous and smooth.  
Functions on closed intervals must have 
one-sided derivatives defined at the end 
points.





Chapter 3

3

3.2 Differentiability

Objectives: •Find where a function is not 
differentiable and distinguish between 
corners, cusps, discontinuities, and 
vertical tangents

•Approximate derivatives numerically 
and graphically.

To be differentiable, a function must be continuous and 
smooth.

Derivatives will fail to exist at:

corner cusp

vertical tangent discontinuity

 f x x  
2

3f x x

  3f x x   1,  0

1,  0

x
f x

x
 

  



There are two theorems on page 113:

If  f has a derivative at x = a, then f is continuous at x = a.

Since a function must be continuous to have a derivative, 
if it has a derivative then it is continuous.


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  1

2
f a 

  3f b 

Intermediate Value Theorem for Derivatives

Between a and b,       must take 

on every value between     and    .

f 
1

2 3

If a and b are any two points in an interval on which  f is 

differentiable, then       takes on every value between         

and           .

f   f a

 f b



3.3 Rules for Differentiation

Objectives: •Use the rules of differentiation to 
calculate derivatives, including second 
and higher order derivatives

If the derivative of a function is its slope, then for a 
constant function, the derivative must be zero.

  0
d c
dx


example: 3y 

0y 

The derivative of a constant is zero.


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We saw that if               ,                  .
2y x 2y x 

This is part of a pattern.

  1n nd x nx
dx


examples:

  4f x x

  34f x x 

8y x

78y x 

power rule



 d ducu c
dx dx



examples:

1n nd cx cnx
dx



constant multiple rule:

5 4 47 7 5 35
d x x x
dx

  



(Each term is treated separately)

 d ducu c
dx dx



constant multiple rule:

sum and difference rules:

 d du dvu v
dx dx dx

    d du dvu v
dx dx dx

  

4 12y x x 
34 12y x  

4 22 2y x x  

34 4
dy x x
dx

 

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product rule:

 
d
dx

uv   du
dx

v  u dv
dx

Notice that this is not just the 
product of two derivatives.

This is sometimes memorized as: d uv   du v  u dv

  2 33 2 5
d x x x
dx

   

 5 3 32 5 6 15
d x x x x
dx

  

 5 32 11 15
d x x x
dx

 

4 210 33 15x x 


  
 x2  3  26 5x   

2x3 5x  2x

4 2 4 2 24 10 6 5 18 15x x x x x    

4 210 33 15x x 


quotient rule:

d
dx

u
v








du
dx

v  u dv
dx

v2

or d u
v








 du v  u dv
v2

3

2

2 5

3

d x x
dx x


 

6x2  5  x2  3   2x3 5x  2x 





x2  3 2




6x4  23x2 15  4x4 10x2 

x2  3 2


2x4 13x2 15

x2  3 2

Higher Order Derivatives:

dyy
dx

  is the first derivative of y with respect to x.

2

2

dy d dy d yy
dx dx dx dx


   
is the second derivative.

(y double prime)

dyy
dx


  is the third derivative.

 4 dy y
dx

 is the fourth derivative.

We will learn 
later what these 
higher order 
derivatives are 
used for.


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Find the horizontal tangents of:  4 22 2y x x  

34 4
dy x x
dx

 

Horizontal tangents occur when slope = zero.
34 4 0x x 

3 0x x 

 2 1 0x x  

  1 1 0x x x  

0, 1,  1x  

Plugging the x values into the 
original equation, we get:

2,  1,  1y y y  

(The function is even, so we 
only get two horizontal 
tangents.)



-2

-1

0

1

2

3

4

-2 -1 1 2

4 22 2y x x  

2y 

1y 

-2

-1

0

1

2

3

4

-2 -1 1 2

4 22 2y x x  

First derivative 
(slope) is zero at:

0, 1,  1x  

34 4
dy x x
dx

 


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3.4 Velocity and Other Rates of Change

Objectives: •Use derivatives to analyze straight 
line motion and solve other problems 
involving rates of change. 

Consider a graph of displacement (distance traveled) vs. time.

time (hours)

distance
(miles)

Average velocity can be 
found by taking:

change in position

change in time

s
t





t

s
A

B

   
ave

f t t f tsV
t t

  
 
 

The speedometer in your car does not measure average 
velocity, but instantaneous velocity.

     
0

lim
t

f t t f tdsV t
dt t 

  
 



(The velocity at one 
moment in time.)



Example: Free Fall Equation

21
 

2
s g t

Gravitational
Constants:

2

ft
32 

sec
g 

2

m
9.8 

sec
g 

2

cm
980 

sec
g 

21
32 

2
s t 

216 s t

32 
dsV t
dt

 

Speed is the absolute value of velocity.


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Acceleration is the derivative of velocity.

dva
dt


2

2

d s
dt

 example: 32v t

32a 

If distance is in: feet

Velocity would be in:
feet

sec

Acceleration would be in:
ft

sec
 sec 

2

ft

sec




time

distance

acc pos
vel pos &
increasing

acc zero
vel pos &
constant

acc neg
vel pos &
decreasing

velocity
zero

acc neg
vel neg &
decreasing acc zero

vel neg &
constant

acc pos
vel neg &
increasing

acc zero,
velocity zero

It is important to understand the relationship between a 
position graph, velocity and acceleration:



Rates of Change:

Average rate of change =
   f x h f x

h
 

Instantaneous rate of change =      
0

lim
h

f x h f x
f x

h

 
 

These definitions are true for any function.

( x does not have to represent time. )


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Example 1:

For a circle:

2A r



from Economics:

Marginal cost is the first derivative of the cost function, and 
represents an approximation of the cost of producing one 
more unit.



Example 13:
Suppose it costs:   3 26 15c x x x x  

to produce x stoves.

If you are currently producing 10 stoves, the 
11th stove will cost approximately:


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3.5 A Couple of Jerks

Objectives: •Use the rules for differentiating the six 
basic trig functions 

A sudden change in acceleration is called a “jerk.” 
When a ride in a car or a bus is jerky, it is not that the 
accelerations involved are necessarily large but that the 
changes in acceleration are abrupt.  Jerk is what spills 
your soft drink.

The derivative responsible for jerk is the third derivative 
of position. 

Jerk is the derivative of acceleration. If a body’s position 
at time t is s(t), the body’s jerk at time t is

j(t)  da
dt


d 3s
dt 2



2


0

2






Consider the function  siny 

We could make a graph of the slope:  slope

1

0

1

0

1
Now we connect the dots!

The resulting curve is a cosine curve.

 sin cos
d x x
dx




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

2


0

2






We can do the same thing for  cosy   slope

0

1

0

1

0
The resulting curve is a sine curve that has 
been reflected about the x-axis.

 cos sin
d x x
dx

 



We can find the derivative of tangent x by using the 
quotient rule.

tan
d x
dx

sin

cos

d x
dx x

 
2

cos cos sin sin

cos

x x x x
x

   

2 2

2

cos sin

cos

x x
x



2

1

cos x

2sec x

  2tan sec
d x x
dx





Derivatives of the remaining trig functions can be 
determined the same way.

sin cos
d x x
dx



cos sin
d x x
dx

 

2tan sec
d x x
dx



2cot csc
d x x
dx

 

sec sec tan
d x x x
dx

 

csc csc cot
d x x x
dx

  


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3.6 Chain Rule

Objectives: •Differentiate composite functions 
using the Chain Rule

•Find Slopes of parametrized curves

Consider a simple composite function:

6 10y x 

 2 3 5y x 

If 3 5u x 

then 2y u

6 10y x  2y u 3 5u x 

6
dy
dx

 2
dy
du

 3
du
dx



dy dy du
dx du dx

 

6 2 3 



one more:
29 6 1y x x  

 2
3 1y x 

If 3 1u x 

3 1u x 

18 6
dy x
dx

  2
dy u
du

 3
du
dx



dy dy du
dx du dx

 

2y u

2then y u

29 6 1y x x  

 2 3 1
dy x
du

 

6 2
dy x
du

 

 18 6 6 2 3x x   
This pattern is called 
the chain rule.


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dy dy du
dx du dx

 Chain Rule:

If            is the composite of                 and                  , 
then:

f g  y f u  u g x

    at at xu g xf g f g
   

example:   sinf x x   2 4g x x  Find:   at  2f g x 

  cosf x x    2g x x   2 4 4 0g   

   0 2f g 

   cos 0 2 2 

1 4 4


We could also do it this way:

    2sin 4f g x x 



Here is a faster way to find the derivative:

 2sin 4y x 


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Another example:

 2cos 3
d x
dx



Derivative formulas include the chain rule!

1n nd duu nu
dx dx

 sin cos
d duu u
dx dx



cos sin
d duu u
dx dx

  2tan sec
d duu u
dx dx



etcetera…

The formulas on the memorization sheet are written with      

instead of      .   Don’t forget to include the      term!
u

udu
dx



The most common mistake on the chapter 3 test is to 
forget to use the chain rule.

Every derivative problem could be thought of as a 
chain-rule problem:

2d x
dx

2
dx x
dx

 2 1x  2x

derivative of 
outside function

derivative of 
inside function

The derivative of x is one.


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The chain rule enables us to find the slope of 
parametrically defined curves:

dy dy dx
dt dx dt

 

  

dy
dydt

dx dx
dt



Divide both sides by
dx
dtThe slope of a parametrized 

curve is given by:

  

dy
dy dt

dxdx
dt





These are the equations for 
an ellipse.

Example: 3cosx t 2siny t

3.7 Implicit Differentiation

Objectives: •Find derivatives using implicit 
differentiation
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2 2 1x y 

This is not a function, 
but it would still be 
nice to be able to find 
the slope.

2 2 1
d d dx y
dx dx dx

  Do the same thing to both sides.



22 siny x y  This can’t be solved for y.

This technique is called 
implicit differentiation.

1   Differentiate both sides w.r.t. x.

2   Solve for         .
dy
dx 

We need the slope.  Since we can’t solve for y, we use 

implicit differentiation to solve for         .
dy
dx

Find the equations of the lines tangent and normal to the 

curve                                at              .2 2 7x xy y   ( 1,2)


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Find the equations of the lines tangent and normal to the 

curve                                at              .2 2 7x xy y   ( 1,2)

4

5
m  tangent: normal:



Higher Order Derivatives

Find            if                          .
2

2

d y
dx

3 22 3 7x y 



3.8 Derivatives of Inverse Trig Functions

Objectives: •Calculate derivatives of functions 
involving the inverse trig functions
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86420

8

6

4

2

0

x

y

x

y

86420

8

6

4

2

0

x

y

x

y

86420

8

6

4

2

0

x

y

x

y  2    0f x x x 

We can find the inverse 
function as follows:

2y x Switch x and y.
2x y

x y

y x

2y x

y x

2
df x
dx



At x = 2:

  22 2 4f  

 2 2 2 4
df
dx

  

4m  2,4

 1f x x 

 
1

1 2f x x 
11
2

1

2

df x
dx

 


1 1

2

df
dx x







To find the derivative of the 
inverse function:

86420

8

6

4

2

0

x

y

x

y

86420

8

6

4

2

0

x

y

x

y  2    0f x x x  2y x

y x

2
df x
dx



At x = 2:

  22 2 4f  

 2 2 2 4
df
dx

  

4m  2,4

 1f x x 

1 1

2

df
dx x




 

1 1 1 1
4

2 2 42 4

df
dx



  


At x = 4:

 1 4 4 2f   

 4, 2
1

4
m 

Slopes are 
reciprocals.

86420

8

6

4

2

0

x

y

x

y

86420

8

6

4

2

0

x

y

x

y 2y x

y x

4m  2,4

 4, 2
1

4
m 

Slopes are 
reciprocals.

Because x and y are 
reversed to find the 
reciprocal function, the 
following pattern always 
holds:

Derivative Formula for Inverses:

df
dx df

dx
x f a

x a








1 1

( )

evaluated at ( )f a
is equal to the reciprocal of

the derivative of ( )f x
evaluated at      .a

The derivative of 1( )f x


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A typical problem using this formula might look like this:

Given:  3 5f   3 6
df
dx



Find:  
1

5
df
dx



Derivative Formula for Inverses:

df
dx df

dx
x f a

x a








1 1

( )



-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0.5 1 1.5

siny x

1siny xWe can use implicit 
differentiation to find:

1sin
d x
dx



1siny x

We could use the same technique to find                   and

.

1tan
d x
dx



1sec
d x
dx



1

2

1
sin

1

d duu
dx dxu

 


1
2

1
tan

1

d duu
dx u dx

 


1

2

1
sec

1

d duu
dx dxu u

 


1

2

1
cos

1

d duu
dx dxu

  


1
2

1
cot

1

d duu
dx u dx

  


1

2

1
csc

1

d duu
dx dxu u

  


1 1cos sin
2

x x  1 1cot tan
2

x x  1 1csc sec
2

x x  


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Your calculator contains all six inverse trig functions.
However it is occasionally still useful to know the following:

1 1 1
sec cosx

x
     

 

1 1cot tan
2

x x  

1 1 1
csc sinx

x
     

 



Using the Formulas

d
dx

sin1 x2 

1

2

1
sin

1

d duu
dx dxu

 


Using the Formulas

d
dx

sec1 5x4 

1

2

1
sec

1

d duu
dx dxu u

 

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3.9 Derivatives of Exponential and Logarithmic Functions

Objectives: •Calculate derivatives of exponential 
and logarithmic functions

-1

0

1

2

3

-3 -2 -1 1 2 3x

Look at the graph of 
xy e

The slope at x=0 
appears to be 1.

If we assume this to 
be true, then:

0 0

0
lim 1

h

h

e e
h








definition of derivative



Now we attempt to find a general formula for the 
derivative of              using the definition.xy e

 
0

lim
x h x

x

h

d e ee
dx h









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xe is its own derivative!

If we incorporate the chain rule:

u ud due e
dx dx



We can now use this formula to find the derivative of xa



 xd a
dx

 ln xad e
dx

(       and           are inverse functions.)
xe ln x

 lnx ad e
dx

 ln lnx a de x a
dx
 (chain rule)



(         is a constant.)ln a

 xd a
dx

 ln xad e
dx

 lnx ad e
dx

 ln lnx a de x a
dx


ln lnx ae a

lnxa a

Incorporating the chain rule:

  lnu ud dua a a
dx dx




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So far today we have:

u ud due e
dx dx

   lnu ud dua a a
dx dx



Now it is relatively easy to find the derivative of        .ln x



lny x

ye x

   yd de x
dx dx



1y dye
dx



1
y

dy
dx e



1
ln

d x
dx x



1
ln

d duu
dx u dx





To find the derivative of a common log function, you 
could just use the change of base rule for logs:

log
d x
dx

ln

ln10

d x
dx


1

ln
ln10

d x
dx


1 1

ln10 x
 

The formula for the derivative of a log of any base 
other than e is:

1
log

lna
d duu
dx u a dx




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u ud due e
dx dx

   lnu ud dua a a
dx dx



1
log

lna
d duu
dx u a dx





1
ln

d duu
dx u dx


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4.1 Extreme Value Functions

Objectives: •Determine the local and global 
extreme values of a function

The textbook gives the following example at the start 
of chapter 4:

The mileage of a certain car can be approximated by:

  3 20.00015 0.032 1.8 1.7m v v v v   

At what speed should you drive the car to obtain 
the best gas mileage?

Of course, this problem isn’t entirely realistic, since it is 
unlikely that you would have an equation like this for 
your car.



  3 20.00015 0.032 1.8 1.7m v v v v   

Notice that at 
the top of the 
curve, the 
horizontal 
tangent has a 
slope of zero.

Traditionally, this fact has been used both as an aid to 
graphing by hand and as a method to find maximum (and 
minimum) values of functions.


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Absolute extreme values are either maximum or 
minimum points on a curve.

Even though the graphing calculator and the computer 
have eliminated the need to routinely use calculus to 
graph by hand and to find maximum and minimum values 
of functions, we still study the methods to increase our 
understanding of functions and the mathematics involved.

They are sometimes called global extremes.

They are also sometimes called absolute extrema.
(Extrema is the plural of the Latin extremum.)



Extreme values can be in the interior or the end points of 
a function.

0

1

2

3

4

-2 -1 1 2
2y x

 ,D   
Absolute Minimum

No Absolute
Maximum



0

1

2

3

4

-2 -1 1 2
2y x

 0,2D 
Absolute Minimum

Absolute
Maximum


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0

1

2

3

4

-2 -1 1 2
2y x

 0,2D 
No Minimum

Absolute
Maximum



0

1

2

3

4

-2 -1 1 2
2y x

 0,2D 
No Minimum

No
Maximum



Extreme Value Theorem:

If  f is continuous over a closed interval, then  f has 
a maximum and minimum value over that interval.

Maximum & 
minimum
at interior points

Maximum & 
minimum
at endpoints

Maximum at 
interior point, 
minimum at 
endpoint


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Local Extreme Values:

A local maximum is the maximum value within some 
open interval.

A local minimum is the minimum value within some open 
interval.



Absolute minimum
(also local minimum)

Local maximum

Local minimum

Absolute maximum

(also local maximum)

Local minimum

Local extremes 
are also called 
relative extremes.



Local maximum

Local minimum

Notice that local extremes in the interior of the function 

occur where       is zero or    is undefined.f  f 

Absolute maximum

(also local maximum)


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Local Extreme Values:

If a function  f has a local maximum value or a local 
minimum value at an interior point c of its domain, 

and if       exists at  c, then

  0f c 

f 



Critical Point:

A point in the domain of a function  f at which

or       does not exist is a critical point of  f .
0f  

f 

Note:
Maximum and minimum points in the interior of a function 
always occur at critical points, but critical points are not 
always maximum or minimum values.



EXAMPLE 3 FINDING ABSOLUTE EXTREMA

Find the absolute maximum and minimum values of
on the interval              .  2/3f x x  2,3

  2/ 3f x x

 
1

3
2

3
f x x


 

 
3

2

3
f x

x
 

There are no values of x that will make
the first derivative equal to zero.

The first derivative is undefined at x=0,
so (0,0) is a critical point.

Because the function is defined over a
closed interval, we also must check the
endpoints.


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 0 0f  To determine if this critical point is
actually a maximum or minimum, we
try points on either side, without
passing other critical points.

  2/3f x x

 1 1f    1 1f 

Since 0<1, this must be at least a local minimum, and 
possibly a global minimum.

 2,3D  

At: 0x 

At: 2x      
2

32 2 1.5874f    

At: 3x     
2

33 3 2.08008f  


 0 0f  To determine if this critical point is
actually a maximum or minimum, we
try points on either side, without
passing other critical points.

  2/3f x x

 1 1f    1 1f 

Since 0<1, this must be at least a local minimum, and 
possibly a global minimum.

 2,3D  

At: 0x 

At: 2x      
2

32 2 1.5874f    

At: 3x 

Absolute
minimum:

Absolute
maximum:

 0,0

 3, 2.08

   
2

33 3 2.08008f  


Absolute minimum (0,0)

Absolute maximum (3,2.08)

  2/ 3f x x


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Finding Maximums and Minimums Analytically:

1 Find the derivative of the function, and determine 
where the derivative is zero or undefined.  These 
are the critical points.

2 Find the value of the function at each critical point.

3 Find values or slopes for points between the 
critical points to determine if the critical points are 
maximums or minimums.

4 For closed intervals, check the end points as 
well.



Critical points are not always extremes!

-2

-1

0

1

2

-2 -1 1 2

3y x

0f  
(not an extreme)



-2

-1

0

1

2

-2 -1 1 2

1/3y x

 is undefined.f 
(not an extreme)


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4.2 Mean Value Theorem

Objectives: •Apply the Mean Value Theorem to find 
the intervals on which a function is 
increasing or decreasing

If  f (x) is a differentiable function over [a,b], then 

at some point between a and b:

     f b f a
f c

b a





Mean Value Theorem for Derivatives

The Mean Value Theorem says that at some point 
in the closed interval, the actual slope equals the 
average slope.



y

x
0

A

B

a b

Slope of chord:

   f b f a
b a



Slope of tangent:

 f c

 y f x

Tangent parallel 
to chord.

c

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Example 1: Show that the function f (x) = x2 satisfies the 
hypotheses of the Mean Value Theorem on the interval 
[0,2]. Then find the value of c in the interval that satisfies 
the equation.

The function is continuous on [0,2] and differentiable on 
(0,2). Since f (0) = 0 and f (2) = 4, the Mean Value 
Theorem guarantees a point c in the interval. 

( ) ( )
( )

f b f af c
b a
 


(2) (0)
( )

2 0

f ff c  


( ) 2f x x 

( ) 2f c c 
4 0

2
2 0

c 




2 2c 

1c 

A function is increasing over an interval if the derivative 
is always positive.

A function is decreasing over an interval if the derivative 
is always negative.

A couple of somewhat obvious definitions:



Where is        increasing and where is it decreasing? 3( ) 4f x x x 

2( ) 3 4f x x  
20 3 4x 

4

3
x  

4

3

4

3


2 0 2

 2
2( 42) 3f    

8 



 2
( )0 403f   

4 



 2
( )2 423f   

8 



Increasing:

Decreasing: 

4 4
, , ,

3 3

   
        
   

4 4
,

3 3

 
 
 
 
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y

x
0

 y f x

 y g x

These two functions have the 
same slope at any value of x.

Functions with the same derivative 
differ by a constant.

C



Example 6:

Find the function           whose derivative is             and 
whose graph passes through           .

 f x  sin x
 0, 2

   cos sin
d x x
dx

 

   cos sin
d x x
dx

 so:

   cosf x x C   

 2 cos 0 C  

2 1 C  
3 C

   cos 3f x x  
Notice that we had to have 
initial values to determine 
the value of C.



The process of finding the original function from the 
derivative is so important that it has a name:

Antiderivative

A function           is an antiderivative of a function     

if                        for all  x in the domain of f.   The process 

of finding an antiderivative is antidifferentiation.

 F x  f x
   F x f x 

You will hear much more about antiderivatives in the future.

This section is just an introduction.


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Example 7b: Find the velocity and position equations 
for a downward acceleration of 9.8 m/sec2 and an 
initial velocity of 1 m/sec downward.

  9.8a t 

  9.8 1v t t 

 1 9.8 0 C 

1 C

  9.8v t t C 
  29.8

2
s t t t C  

  24.9s t t t C  
The initial position is zero at time zero.

 2
0 4.9 0 0 C  

0 C

  24.9s t t t 


4.3 Connecting f’ and f’’ with the Graph of f.

Objectives: •Use the First and Second Derivative 
Tests to determine the local extreme 
values of a function

•Determine the concavity of a function 
and locate the points of inflection by 
analyzing the 2nd derivative

•Graph f using information about f’.

First derivative:

y is positive Curve is rising.

y is negative Curve is falling.

y is zero Possible local maximum or 
minimum.

Second derivative:

y is positive Curve is concave up.

y is negative Curve is concave down.

y is zero Possible inflection point
(where concavity changes). 
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Example:
Graph   23 23 4 1 2y x x x x     



Example:
Graph   23 23 4 1 2y x x x x     



We then look for inflection points by setting the second 
derivative equal to zero.

43210-1-2

5

4

3

2

1

0

-1

43210-1-2

5

4

3

2

1

0

-1

Make a summary table:

x y y y

1 0 9 12 rising, concave down

0 4 0 6 local max

1 2 3 0 falling, inflection point

2 0 0 6 local min

3 4 9 12 rising, concave up


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4.4 Modeling and Optimization

Objectives: •Solve application problems involving 
finding minimum or maximum values of 
functions

A Classic Problem

You have 40 feet of fence to enclose a rectangular garden 
along the side of a barn.  What is the maximum area that 
you can enclose?

x x

40 2x

 40 2A x x 

240 2A x x 

40 4A x  

0 40 4x 

4 40x 

10x 

 10 40 2 10A   

 10 20A 

2200 ftA 
40 2l x 

w x 10 ftw 

20 ftl 


To find the maximum (or minimum) value of a function:

1    Write it in terms of one variable.

2    Find the first derivative and set it equal to zero.

3    Check the end points if necessary.


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Example 5: What dimensions for a one liter cylindrical can will 
use the least amount of material?

We can minimize the material by minimizing the area.

22 2A r rh  
area of
ends

lateral
area

We need another 
equation that 
relates r and h:

4.5 Linearization and Newton’s Method

Objectives: •Find linearizations

•Estimate the change in a function using 
differentials

For any function f (x), the tangent is a close approximation 
of the function for some small distance from the tangent 
point.

y

x
0 x a

   f x f a
We call the equation of the 
tangent the linearization of 
the function.


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The linearization is the equation of the tangent line, and 
you can use the old formulas if you like.

Start with the point/slope equation:

 1 1y y m x x   1x a  1y f a  m f a

    y f a f a x a  

    y f a f a x a  

      L x f a f a x a   linearization of f at a

   f x L x is the standard linear approximation of f at a.



Example: Find the linearization of

at , and use it to approximate without a 

calculator.    

f (x)  1 x
x  0

f (0)  1

f (x)  1
2 1 x 

1
2


1

2 1 x

L(x)  1 1
2 (x  0)

 1
x
2

L(.02)  1
.02

2
 1.01

1.02

      L x f a f a x a  

f (0) 
1

2

Example: Find the linearization of

at , and use it to approximate   

f (x)  cos x
x  

2 cos1.75

      L x f a f a x a  

f (2 )  0

f (x)  sin x
f (2 )  sin 

2 
 1

L(x)  0 1(x  
2 )

 x  
2

L(1.75)  1.75  
2

 .1792
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Use linearization's to approximate  123.

f (x)  x

f (121)  11

f (x) 
1

2 x

f (121) 
1

22

L(x)  11
1

22
(x 121)

L(123)  11
1

22
(123121)

L(123)  11
1

11

 11.09

Let x = 121  

Important linearizations for x near zero:

 1
kx 1 kx

sin x

cos x

tan x

x

1

x

 
1

2
1

1 1 1
2

x x x    

 
 

1
3 4 4 3

4 4

1 5 1 5

1 5
1 5 1

3 3

x x

x x

  

   

 f x  L x



This formula also leads to 
non-linear approximations:

Differentials:

When we first started to talk about derivatives, we said that

becomes           when the change in  x and change in  

y become very small.

y
x




dy
dx

dy can be considered a very small change in y.

dx can be considered a very small change in x.


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Let                   be a differentiable function.

The differential        is an independent variable.

The differential        is:

 y f x
dx
dy  dy f x dx



Example:  Consider a circle of radius 10.  If the radius 
increases by 0.1, approximately how much will the area 
change?

2A r

2  dA r dr

2  
dA drr
dx dx



very small change in  A
very small change in  r

 2 10 0.1dA    

2dA  (approximate change in area)



2dA  (approximate change in area)

Compare to actual change:

New area:

Old area:

 2
10.1 102.01 

 2
10 100.00 

2.01

.01

2.01






Error

Original Area

Error

Actual Answer
.0049751 0.5%

0.01%.0001.01

100







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4.6 Related Rates

Objectives: •Solve related rate problems 

First, a review problem:

Consider a sphere of radius 10cm.

If the radius changes 0.1cm (a very small amount) how 
much does the volume change?

34

3
V r

24dV r dr

 2
4 10cm 0.1cmdV  

340 cmdV 

The volume would change by approximately              .340 cm



Now, suppose that the radius is changing at an 
instantaneous rate of 0.1 cm/sec.

(Possible if the sphere is a soap bubble or a balloon.)

34

3
V r

24
dV drr
dt dt



 2 cm
4 10cm 0.1

sec

dV
dt

    
 

3cm
40

sec

dV
dt



The sphere is growing at a rate of                    .340  cm / sec

Note:  This is an exact answer, not an approximation like
we got with the differential problems.


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Water is draining from a cylindrical 
tank at 3 liters/second.  How fast is 
the surface dropping?

L
3

sec

dV
dt

 
3cm

3000
sec

 

Find
dh
dt
2V r h

2dV dhr
dt dt

 (r is a constant.)

3
2cm

3000
sec

dhr
dt

 

3

2

cm
3000

secdh
dt r

 

(We need a formula to 
relate V and h. )



Steps for Related Rates Problems:

1.    Draw a picture (sketch).

2.   Write down known information.

3.   Write down what you are looking for.

4.   Write an equation to relate the variables.

5.   Differentiate both sides with respect to t.

6.   Evaluate.



Hot Air Balloon Problem:

Given:
4

 
rad

0.14
min

d
dt



How fast is the balloon rising?

Find
dh
dt

tan
500

h 

2 1
sec

500

d dh
dt dt
 

 
2

1
sec 0.14

4 500

dh
dt

   
 

h


500ft

   
2

2 0.14 500
dh
dt

 

sec 2
4




ft
140

min

dh
dt




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4x 

3y 

30
dy
dt



40
dx
dt



B

A

5z 

Truck Problem:

How fast is the distance between the 
trucks changing 6 minutes later?

r t d 
1

40 4
10
 

1
30 3

10
 

2 2 23 4 z 
29 16 z 

225 z
5 z

2 2 2x y z 

2 2 2
dx dy dzx y z
dt dt dt
 

4 40 3 30 5
dz
dt

   

250 5
dz
dt


50

dz
dt



miles
50

hour

Truck A travels east at 40 mi/hr.
Truck B travels north at 30 mi/hr.


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5.1 Estimating with Finite Sums

Objectives: •Approximate the area under the graph 
of a nonnegative continuous function 
by using rectangle approximation 
methods

•Interpret the area under a graph as a 
net accumulation of a rate of change 

0

1

2

3

1 2 3 4

time

velocity

After 4 seconds, 
the object has 
gone 12 feet.

Consider an object moving at a constant rate of 3 ft/sec.

Since rate . time = distance:

If we draw a graph of the velocity, the distance that the 
object travels is equal to the area under the line.

ft
3 4 sec 12 ft

sec
 



3t d

0

1

2

3

1 2 3 4

If the velocity is not constant,
we might guess that the 
distance traveled is still equal
to the area under the curve.

(The units work out.)

21
1

8
V t Example:

We could estimate the area under the curve by 
drawing rectangles touching at their left corners.

This is called the Left-hand Rectangular 
Approximation Method (LRAM).

1 1
1

8

1
1

2

1
2

8t v
10

1 1
1

8

2 1
1

2

3 1
2

8
Approximate area: 1 1 1 3

1 1 1 2 5 5.75
8 2 8 4

    

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We could also use a Right-hand Rectangular Approximation 
Method (RRAM).

1
1

8

1
1

2

1
2

8

Approximate area: 1 1 1 3
1 1 2 3 7 7.75

8 2 8 4
    

3

0

1

2

3

1 2 3 4

21
1

8
V t 



Another approach would be to use rectangles that touch at 
the midpoint.  This is the Midpoint Rectangular 
Approximation Method (MRAM).

1.03125
1.28125

1.78125

Approximate area:

6.625

2.53125

t v
1.031250.5

1.5 1.28125

2.5 1.78125

3.5 2.53125
0

1

2

3

1 2 3 4

In this example there are four 
subintervals.
As the number of subintervals 
increases, so does the accuracy.

21
1

8
V t 



21
1

8
V t 

Approximate area:
6.65624

t v
1.007810.25

0.75 1.07031

1.25 1.19531

1.382811.75

2.25

2.75

3.25

3.75

1.63281

1.94531

2.32031

2.75781

13.31248  0.5 6.65624

width of subinterval

0

1

2

3

1 2 3 4

With 8 subintervals:

The exact answer for this
problem is      .6.6


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Circumscribed rectangles 
are all above the curve:

0

1

2

3

1 2 3 4

0

1

2

3

1 2 3 4

Inscribed rectangles are 
all below the curve:



We will be learning how to find the exact area under a 
curve if we have the equation for the curve.  Rectangular 
approximation methods are still useful for finding the 
area under a curve if we do not have the equation.

The TI-89 calculator can do these rectangular 
approximation problems.  This is of limited usefulness, 
since we will learn better methods of finding the area 
under a curve, but you could use the calculator to check 
your work.



5.2 The Definite Integral 

Objectives: •Express the area under a curve as a 
definite integral and as a limit of 
Riemann sums.
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When we find the area 
under a curve by adding 
rectangles, the answer is 
called a Rieman sum.

0

1

2

3

1 2 3 4

21
1

8
V t 

subinterval

partition

The width of a rectangle is 
called a subinterval.

The entire interval is 
called the partition.

Subintervals do not all have to be the same size.



0

1

2

3

1 2 3 4

21
1

8
V t 

subinterval

partition

If the partition is denoted by P, then 
the length of the longest subinterval 
is called the norm of P and is 
denoted by          .P

As         gets smaller, the 
approximation for the area gets 
better.

P

 
0

1

Area lim
n

k kP k
f c x




  if P is a partition 
of the interval  ,a b



 
0

1

lim
n

k kP k
f c x




 is called the definite integral of

over             .f  ,a b

If we use subintervals of equal length, then the length of a 

subinterval is: b ax
n


 

The definite integral is then given by:

 
1

lim
n

kn k
f c x






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 
1

lim
n

kn k
f c x




 Leibnitz introduced a simpler notation 
for the definite integral:

   
1

lim
n b

k an k
f c x f x dx




  

Note that the very small change 
in x becomes dx.



 
b

a
f x dx

Integration
Symbol

lower limit of integration

upper limit of integration

integrand
variable of integration

(dummy variable)

It is called a dummy variable 
because the answer does not 
depend on the variable chosen.



 
b

a
f x dx

We have the notation for integration, but we still need 
to learn how to evaluate the integral.



Definition Area Under a Curve (as a Definite Integral)

If y = f (x) is a nonnegative and integrable over a closed 
interval [a, b], then the area under the curve y = f (x) from 
a to b is the integral of f from a to b, 
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0

1

2

3

1 2 3 4

time

velocity

After 4 seconds, 
the object has 
gone 12 feet.

In section 5.1, we considered an object moving at a 
constant rate of 3 ft/sec.

Since rate . time = distance: 3t d

If we draw a graph of the velocity, the distance that the 
object travels is equal to the area under the line.

ft
3 4 sec 12 ft

sec
 



This is also the same as saying 

4

0

3 12dx 

The Integral of a Constant

If f (x) = c, where c is a constant, on the interval [a, b], 
then

 ( )
b

a

c dx c b a 

Evaluate the integral 

2
2

2

4 x dx



To evaluate this integral, we can graph the function 
and then find the area under the curve

24 x

The curve is a semi-circle 
with a radius of 2. 

21

2
A r

21
(2)

2
A 

2A 

2
2

2

4 2x dx 


 
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When f (x) ≤ 0, the function is below the x –axis, therefore 
the area is negative. 

Other Important Information

1 2

1
( )

2
A b b h The area of a trapezoid is

5.3 Definite Integrals and Antiderivatives

Objectives: •Apply rules for definite integrals.

•Find the average value of a function 
over a closed interval. 

 
0

1

lim
n

k kP k

f c x




 

 
b

a
f x dx 

   F b F a 

Area



F(x) is the antiderivative of f(x)
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Area from x=0
to x=1

0

1

2

3

4

1 2

Example: 2y x

Find the area under the curve from 
x=1 to x=2.

2 2

1
x dx

2
3

1

1

3
x

31 1
2 1

3 3
  

8 1

3 3


7

3


Area from x=0
to x=2

Area under the curve from x=1 to x=2.



1.

  0
a

a
f x dx  If the upper and lower limits are equal, 

then the integral is zero.
2.

   
b a

a b
f x dx f x dx   Reversing the limits 

changes the sign.

   
b b

a a
k f x dx k f x dx  3. Constant multiples can be 

moved outside.

       
b b b

a a a
f x g x dx f x dx g x dx      4.

Integrals can be added and 
subtracted.



       
b b b

a a a
f x g x dx f x dx g x dx      4.

Integrals can be added and 
subtracted.

5.      
b c c

a b a
f x dx f x dx f x dx   

Intervals can be added
(or subtracted.)

a b c

 y f x


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The average value of a function is the value that would 
give the same area if the function was a constant:

0

1

2

3

4

5

1 2 3

21

2
y x

3 2

0

1

2
A x dx 

3
3

0

1

6
x

27

6


9

2
 4.5

4.5
Average Value 1.5

3
 

 Area 1
Average Value  

Width

b

a
f x dx

b a
 

 

1.5



The mean value theorem for definite integrals says that 
for a continuous function, at some point on the interval the 
actual value will equal the average value.

Mean Value Theorem (for definite integrals)

If f is continuous on          then at some point c in          ,  ,a b  ,a b

   1
 

b

a
f c f x dx

b a


 



Objectives: •Apply the Fundamental Theorem of 
Calculus 

•Understand the relationship between 
the derivative and the definite integral 
as expressed in both parts of the FTC

5.4 Fundamental Theorem of Calculus
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The Fundamental Theorem of Calculus, Part 1

If f is continuous on          , then the function ,a b

   
x

a
F x f t dt 

has a derivative at every point in           , and ,a b

   
x

a

dF d f t dt f x
dx dx

 



   
x

a

d f t dt f x
dx



1.  Derivative of an integral.

2.  Derivative matches upper limit of integration.

3.  Lower limit of integration is a constant.

First Fundamental Theorem:



cos  
xd t dt

dx  cos x 1.  Derivative of an integral.

2.  Derivative matches 
upper limit of integration.

3.  Lower limit of integration 
is a constant.

 sin
xd t

dx 

  sin sin
d x
dx

 
0

sin
d x
dx

cos x

The long way:
First Fundamental Theorem:


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20

1
 

1+t

xd dt
dx  2

1

1 x




1.  Derivative of an integral.

2.  Derivative matches 
upper limit of integration.

3.  Lower limit of integration 
is a constant.



2

0
cos  

xd t dt
dx 

 2 2cos
dx x
dx


 2cos 2x x

 22 cosx x

The upper limit of integration does 
not match the derivative, but we 
could use the chain rule.



5
3 sin  

x

d t t dt
dx 

The lower limit of integration is not 
a constant, but the upper limit is. 

5
3 sin  

xd t t dt
dx

 

3 sinx x

We can change the sign of the 
integral and reverse the limits.


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2

2

1
 

2

x

tx

d dt
dx e

Neither limit of integration is a 
constant.

2 0

0 2

1 1
  

2 2

x

t tx

d dt dt
dx e e

     
It does not 
matter what 
constant we use!

2 2

0 0

1 1
  

2 2

x x

t t

d dt dt
dx e e

     

2 2

1 1
2 2

22
xx

x
ee

  


(Limits are reversed.)

(Chain rule is used.)2 2

2 2

22
xx

x
ee

 


We split the integral into two parts.



The Fundamental Theorem of Calculus, Part 2

If f is continuous at every point of          , and if 

F is any antiderivative of f on           , then

 ,a b

     
b

a
f x dx F b F a 

 ,a b

(Also called the Integral Evaluation Theorem)

We already know this!

To evaluate an integral, take the anti-derivatives and subtract.



Objectives: •Approximate the definite integral by 
using the Trapezoid Rule and by using 
Simpson’s Rule, and estimate the error 
in using the Trap and Simpson’s Rule. 

5.5 Trapezoidal Rule 



Chapter 5

13

0

1

2

3

1 2 3 4

21
1

8
y x 

4
3

0

1

24
A x x 

4 2

0

1
1 

8
A x dx 

0 4x 

Actual area under curve:

20

3
A  6.6



0

1

2

3

1 2 3 4

21
1

8
y x  0 4x 

Left-hand rectangular 
approximation:

Approximate area: 1 1 1 3
1 1 1 2 5 5.75

8 2 8 4
    

(too low)



Approximate area: 1 1 1 3
1 1 2 3 7 7.75

8 2 8 4
    

0

1

2

3

1 2 3 4

21
1

8
y x  0 4x 

Right-hand rectangular 
approximation:

(too high)


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Averaging the two:

7.75 5.75
6.75

2


 1.25% error (too high)



1 9 1 9 3 1 3 17 1 17
1 3

2 8 2 8 2 2 2 8 2 8
T                      

       
1 9 9 3 3 17 17

1 3
2 8 8 2 2 8 8

T          
 

1 27

2 2
T    

 

27

4
 6.75 (still too high)



0

1

2

3

1 2 3 4

Trapezoidal Rule:

 0 1 2 12 2 ... 2
2 n n
hT y y y y y     

( h = width of subinterval )

This gives us a better approximation than either left 
or right rectangles.


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1.03125
1.28125

1.78125
2.53125

0

1

2

3

1 2 3 4

21
1

8
y x  0 4x 

Compare this with the 
Midpoint Rule:

Approximate area: 6.625 (too low)0.625% error

The midpoint rule gives a closer approximation than the 
trapezoidal rule, but in the opposite direction.



Midpoint Rule: 6.625 (too low)0.625% error

Trapezoidal Rule: 6.750 1.25% error (too high)

Notice that the trapezoidal rule gives us an answer that 
has twice as much error as the midpoint rule, but in the 
opposite direction.

If we use a weighted average:

 2 6.625 6.750
6.6

3




This is the 
exact answer!

Oooh!

Ahhh!

Wow!


1x 2x 3x 4xh h h h

This weighted approximation gives us a closer approximation 
than the midpoint or trapezoidal rules.

Midpoint:

 1 3 1 32 2 2M h y h y h y y     

Trapezoidal:

   0 2 2 4

1 1
2 2

2 2
T y y h y y h   

   0 2 2 4T h y y h y y   

 0 2 42T h y y y  

   1 3 0 2 4

1
4 2

3
h y y h y y y      

twice midpoint trapezoidal

 1 3 0 2 44 4 2
3

h y y y y y    

 0 1 2 3 44 2 4
3

h y y y y y    

2

3

M T


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Simpson’s Rule:

 0 1 2 3 2 14 2 4 ... 2 4
3 n n n
hS y y y y y y y        

( h = width of subinterval, n must be even )

Example:

0

1

2

3

1 2 3 4

21
1

8
y x  1 9 3 17

1 4 2 4 3
3 8 2 8

S          
 

1 9 17
1 3 3

3 2 2
      
 

 1
20

3
 6.6


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Objectives: •Solve initial value problems
•Construct slope fields using 
technology and interpret slope fields as 
visualizations of differential equations.

6.1 Slope Fields and Euler’s Method

First, a little review:

Consider:
2 3y x 

then: 2y x  2y x 

2 5y x 
or

It doesn’t matter whether the constant was 3 or -5, since 
when we take the derivative the constant disappears.

However, when we try to reverse the operation:

Given: 2y x  find y

2y x C 

We don’t know what the 
constant is, so we put “C” in 
the answer to remind us that 
there might have been a 
constant.



If we have some more information we can find C.

Given:              and            when           , find the equation for     .2y x  y4y  1x 

2y x C 
24 1 C 

3 C
2 3y x 

This is called an initial value 
problem.  We need the initial 
values to find the constant.

An equation containing a derivative is called a differential 
equation.  It becomes an initial value problem when you 
are given the initial condition and asked to find the original 
equation.


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Initial value problems and differential equations can be 
illustrated with a slope field. 

Slope fields are mostly used as a learning tool and are 
mostly done on a computer or graphing calculator, but a 
recent AP test asked students to draw a simple one by hand.



Draw a segment 
with slope of 2.

Draw a segment 
with slope of 0.

Draw a segment 
with slope of 4.

2y x 

x y y
0 0 0
0 1 0
0 0
0 0

2
3

1 0 2
1 1 2

2 0 4

-1 0 -2

-2 0 -4



Objectives:  •Compute indefinite integrals by the 
method of substitution  

6.2 Antidifferentiation by Substitution
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Example 1:

 5
2x dx Let  2u x 

du dx
5u du
61

6
u C

 6
2

6

x
C




The variable of integration 
must match the variable in 
the expression.

Don’t forget to substitute the 
value for u back into the problem!



Example:
(Exploration 1 in the book)

21 2  x x dx 
One of the clues that we look for is 
if we can find a function and its 
derivative in the integrand.

The derivative of              is             .
21 x 2  x dx

1

2  u du
3

2
2

3
u C

 
3

2 2
2

1
3

x C 

2Let 1u x 

2  du x dx

Note that this only worked because 
of the 2x in the original.
Many integrals can not be done by 
substitution.



Example 2:

4 1 x dx Let 4 1u x 

4 du dx

1

4
du dx

Solve for dx.
1

2
1

 
4

u du
3

2
2 1

3 4
u C 

3

2
1

6
u C

 
3

2
1

4 1
6

x C 

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Example 3:

 cos 7 5  x dx
7 du dx

1

7
du dx

1
cos

7
u du

1
sin

7
u C

 1
sin 7 5

7
x C 

Let 7 5u x 



Example:  (Not in book)

 2 3sin  x x dx 3Let u x
23  du x dx

21
 

3
du x dx

We solve for             
because we can find it 
in the integrand.

2  x dx

1
sin  

3
u du

1
cos

3
u C 

31
cos

3
x C 



Example 7:

4sin cos  x x dx

Let sinu x

cos  du x dx

 4
sin cos  x x dx

4  u du
51

5
u C

51
sin

5
x C


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Example:

24

0
tan  sec  x x dx





The technique is a little different 
for definite integrals.

Let tanu x
2sec  du x dx

 0 tan 0 0u  

tan 1
4 4

u      
 

1

0
 u du

We can find 
new limits, 
and then we 
don’t have 
to substitute 
back.

new limit

new limit

1
2

0

1

2
u

1

2
We could have substituted back and 
used the original limits.



Example:

24

0
tan  sec  x x dx




Let tanu x

2sec  du x dx4

0
 u du





Wrong!
The limits don’t match!

 
42

0

1
tan

2
x





 
2

21 1
tan tan 0

2 4 2

   
 

2 21 1
1 0

2 2
   

 u du
21

2
u

1

2


Using the original limits:

Leave the 
limits out until 
you substitute 
back.

This is 
usually 
more work 
than finding 
new limits



Example:

1 2 3

1
3 x 1 x dx


 3Let 1u x 

23  du x dx
 1 0u  

 1 2u 
1

2
2

0
 u du

23

2

0

2

3
u Don’t forget to use the new limits.

3

2
2

2
3


2
2 2

3
  4 2

3



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Objectives: •Use integration by parts to evaluate 
indefinite and definite integrals.
•Use tabular integration or the method 
of solving for the unknown integral in 
order to evaluate integrals 

6.3 Integration by Parts

6.3  Integration By Parts

Start with the product rule:

 d dv duuv u v
dx dx dx

 

    d uv u dv v du 

    d uv v du u dv 

   u dv d uv v du 

    u dv d uv v du  

    u dv d uv v du   

  u dv uv v du  
This is the Integration by Parts 
formula.



  u dv uv v du  

The Integration by Parts formula is a “product rule” for 
integration.

u differentiates to 
zero (usually).

dv is easy to 
integrate.

Choose u in this order:    LIPET

Logs, Inverse trig, Polynomial, Exponential, Trig


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Example 1:

cos  x x dx
  u dv uv v du  

LIPET



Example:

ln  x dx
  u dv uv v du  

LIPET



Example 4:

2  xx e dx
  u dv uv v du   LIPET


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Example 5:

cos  xe x dx
LIPET



A Shortcut:  Tabular Integration

Tabular integration works for integrals of the form:

   f x g x dx

where: Differentiates to 
zero in several 
steps.

Integrates 
repeatedly. 



2  xx e dx
   & deriv.f x    & integralsg x


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3 sin  x x dx



Objectives: •Solve problems involving exponential 
growth and decay in variety of 
applications

6.4 Exponential Growth and Decay

The number of rabbits in a population increases at a rate 
that is proportional to the number of rabbits present (at 
least for awhile.)

So does any population of living creatures.  Other things 
that increase or decrease at a rate proportional to the 
amount present include radioactive material and money in 
an interest-bearing account.

If the rate of change is proportional to the amount present, 
the change can be modeled by:

dy ky
dt




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dy ky
dt



1
 dy k dt

y


1
 dy k dt

y
 

ln y kt C 

Rate of change is proportional 
to the amount present.

Divide both sides by y.

Integrate both sides.



1
 dy k dt

y
 

ln y kt C 

Integrate both sides.

Exponentiate  both sides.

When multiplying like bases, add 
exponents.  So added exponents 
can be written as multiplication.

ln y kt Ce e 

C kty e e 



ln y kt Ce e 

C kty e e 

Exponentiate  both sides.

When multiplying like bases, add 
exponents.  So added exponents 
can be written as multiplication.

C kty e e 

kty Ae Since             is a constant, let                  .
Ce Ce A 


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C kty e e 

kty Ae Since             is a constant, let                  .
Ce Ce A 

At              ,               .0t  0y y0
0

ky Ae 

0y A

1

0
kty y e This is the solution to our original initial 

value problem.



0
kty y eExponential Change:

If the constant k is positive then the equation 

represents growth.  If k is negative then the equation 
represents decay.

Note: This lecture will talk about exponential change 
formulas and where they come from.  The problems in 
this section of the book mostly involve using those 
formulas.  There are good examples in the book, which I 
will not repeat here.



Continuously Compounded Interest

If money is invested in a fixed-interest account where the 
interest is added to the account k times per year, the 

amount present after t years is:

  0 1
ktrA t A

k
   
 

If the money is added back more frequently, you will make 
a little more money.

The best you can do is if the 
interest is added continuously.


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Of course, the bank does not employ some clerk to 
continuously calculate your interest with an adding machine.

We could calculate: 0lim 1
kt

k

rA
k

  
 

but we won’t learn how to find this limit until chapter 8.

Since the interest is proportional to the amount present, 
the equation becomes:

Continuously Compounded 
Interest:

0
rtA A e

You may also use:

rtA Pe

which is the same thing.

(The TI-89 can do it now if you would like to try it.)



Radioactive Decay

The equation for the amount of 
a radioactive element left after 
time t is:

0
kty y e

This allows the decay constant, k, 
to be positive.

The half-life is the time required for half the material to decay.



Half-life

0 0

1

2
kty y e

 1
ln ln

2
kte   

 

ln1 ln 2 kt  
0

ln 2 kt

ln 2 t
k



Half-life:

ln 2
half-life

k



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Newton’s Law of Cooling

Espresso left in a cup will cool to the temperature of the 
surrounding air.  The rate of cooling is proportional to the 
difference in temperature between the liquid and the air.

(It is assumed that the air temperature is constant.)

If we solve the differential equation:  s
dT k T T
dt

  

we get:
Newton’s Law of Cooling

 0
kt

s sT T T T e  

where        is the temperature 
of the surrounding medium, 
which is a constant.

sT



Objectives:  •Evaluate integrals using partial fractions

6.5 Partial Fractions

2

5 3
 

2 3

x dx
x x


 

1





Chapter 6

14

 2

6 7

2

x
x




2



3 2

2

2 4 3

2 3

x x x
x x
  
 

3



4



Find the general solution to dy
dx


6x2 8x  4

x2  4  x 1 
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Objectives:  •Group Presentations
•Solve problems involving exponential or 
logistic population grown. 

6.5 Population Growth

We have used the exponential growth equation
to represent population growth.

0
kty y e

The exponential growth equation occurs when the rate of 
growth is proportional to the amount present.

If we use P to represent the population, the differential 
equation becomes: dP kP

dt


The constant k is called the relative growth rate.

/dP dt k
P




The population growth model becomes: 0
ktP P e

However, real-life populations do not increase forever.   
There is some limiting factor such as food, living space or 
waste disposal.

There is a maximum population, or carrying capacity, M.

A more realistic model is the logistic growth model where 

growth rate is proportional to both the amount present (P) 

and the fraction of the carrying capacity that remains: M P
M






Chapter 6

16

The equation then becomes:

dP M PkP
dt M

   
 

Our book writes it this way:

Logistics Differential Equation

 dP k P M P
dt M

 

We can solve this differential equation to find the logistics 
growth model.



Logistics Differential Equation

 dP k P M P
dt M

 



Logistics Growth Model

1 kt

MP
Ae




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Example:

Logistic Growth Model

Ten grizzly bears were introduced to a national park 10 
years ago.  There are 23 bears in the park at the present 
time.  The park can support a maximum of 100 bears.

Assuming a logistic growth model, when will the bear 
population reach 50?   75?   100?



0.1

100

1 9 tP
e



0

20

40

60

80

100

20 40 60 80 100Years

BearsWe can graph 
this equation 
and use 
“trace” to find 
the solutions. 

y=50 at 22 years

y=75 at 33 years

y=100 at 75 years


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1

Day 61/62
11/17/14

Objectives:  •Solve problems in which a rate is 
integrated to find the net change over 
time in a variety of applications

Assignment: pg. 386 #’s 1‐15 odd, 17‐20, 31‐36

7.1 Integral as Net Change 

-100

-50

0

50

100

2 4 6 8 10

ft
min

minutes

A honey bee makes several trips from the hive to a flower 
garden.  The velocity graph is shown below.

What is the total distance traveled by the bee?

200ft

200ft

200ft

100ft

200 200 200 100 700    700 feet



-100

-50

0

50

100

2 4 6 8 10

ft
min

minutes

What is the displacement of the bee?

200ft

-200ft

200ft

-100ft

200 200 200 100 100   

100 feet towards the hive


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-2

-1

0

1

2

1 2 3 4 5

velocity graph

-2

-1

0

1

2

1 2 3 4 5

position graph

1

2

1
2

1
2

Displacement:

1 11 2 1
2 2

    

Distance Traveled:

1 11 2 4
2 2

   

Every AP exam I have seen 
has had at least one 
problem requiring students 
to interpret velocity and 
position graphs.



To find the displacement (position shift) from the velocity 
function, we just integrate the function.  The negative 
areas below the x-axis subtract from the total 
displacement.

 Displacement
b

a
V t dt 

 Distance Traveled
b

a
V t dt 

To find distance traveled we have to use absolute value.

Find the roots of the velocity equation and integrate in 
pieces, just like when we found the area between a curve 
and the x-axis.  (Take the absolute value of each integral.)
Or you can use your calculator to integrate the absolute 
value of the velocity function. (However, on the AP exam, 
they look for the roots of the velocity equation) 

2
2

8( )
( 1)

v t t
t

 


Find the displacement the object travels in the1st second

An object has the following velocity

1
2

2
0

8( )
( 1)

s t t dt
t

 


13

0

8
3 1
t

t
 


1 114 8
3 3

    
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2
2

8( )
( 1)

v t t
t

 


An object has the following velocity

Find the distance the object travels in 2 seconds. 

First you have to find when the object stops, i.e. when the 
velocity is zero.

2
2

80
( 1)

t
t

 


2.2545...
1.2545...

t
t
 


1.2545...t 

Then we need to find out when the object is moving in the 
positive direction and the negative direction

( )v t
0 

2
2

8( )
( 1)

v t t
t

 


An object has the following velocity

Now integrate in different pieces using the bounds when 
the object is stop. Do not forgot to take the absolute value 
integral when the object is moving to the left. 

1.2545 2
2 2

2 2
0 0

8 8( )
( 1) ( 1)

s t t dt t dt
t t

   
  

4.9202

Example 5: National Potato Consumption

The rate of potato consumption 
for a particular country was:

  2.2 1.1tC t  

where t is the number of years 
since 1970 and C is in millions 
of bushels per year.

For a small       , the rate of consumption is constant.t

The amount consumed during that short time is               . C t t


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Example 5: National Potato Consumption

  2.2 1.1tC t  

The amount consumed during that short time is               . C t t

We add up all these small 
amounts to get the total 
consumption:

 total consumption  C t dt 

4

2
2.2 1.1tdt

4

2

12.2 1.1
ln1.1

tt 

From the beginning of 1972 to 
the end of 1973:

7.066 million 
bushels



Work:

work force  distance 

Calculating the work is easy 
when the force and distance are 
constant.

When the amount of force 
varies, we get to use calculus!



Hooke’s law for springs: F kx

x = distance that 
the spring is 
extended beyond 
its natural length

k = spring 
constant


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Hooke’s law for springs: F kx

Example 7:

It takes 10 Newtons to stretch a 
spring 2 meters beyond its natural 
length.

F=10 N

x=2 M

10 2k 

5 k 5F x 

How much work is done stretching 
the spring to 4 meters beyond its 
natural length?



F(x)

x=4 M

How much work is done stretching 
the spring to 4 meters beyond its 
natural length?

For a very small change in x, the 
force is constant.

 dw F x dx

5  dw x dx

5  dw x dx 
4

0
5  W x dx 

4
2

0

5
2

W x

40W  newton-meters

40W  joules

  5F x x



Day 63/64
11/19/14

Objectives:  •Use integration to calculate areas of 
regions in a plane

Assignment: pg. 395 #’s 2‐42 even, 50‐55

7.2 Areas in the Plane 
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2
1 2y x 

2y x 

How can we find the area 
between these two curves?

We could split the area into 
several sections, use 
subtraction and figure it out, 
but there is an easier way.



2
1 2y x 

2y x 

Consider a very thin vertical 
strip.

The length of the strip is:

1 2y y or    22 x x  

Since the width of the strip is 
a very small change in x, we 
could call it dx.



2
1 2y x 

2y x 

1y

2y

1 2y y
dx

Since the strip is a long thin 
rectangle, the area of the strip is:

 2length  width 2 x x dx   

If we add all the strips, we get:
2 2

1
2  x x dx


 


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2
1 2y x 

2y x 

2 2

1
2  x x dx


 

2
3 2

1

1 12
3 2

x x x


 

8 1 14 2 2
3 3 2

           
   

8 1 16 2
3 3 2

   

36 16 12 2 3
6

    27
6


9
2





The formula for the area between curves is:

   1 2Area
b

a
f x f x dx   

We will use this so much, that you won’t need to 
“memorize” the formula!



y x

2y x 

y x

2y x 

If we try vertical strips, we 
have to integrate in two parts:

dx

dx
 

2 4

0 2
 2x dx x x dx   

We can find the same area 
using a horizontal strip.

dy
Since the width of the strip 
is dy, we find the length of 
the strip by solving for x in 
terms of y.y x

2y x

2y x 

2y x 


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y x

2y x 

We can find the same area 
using a horizontal strip.

dy
Since the width of the strip 
is dy, we find the length of 
the strip by solving for x in 
terms of y.y x

2y x

2y x 

2y x 

 
2 2

0
2  y y dy 

length of strip

width of strip

2
2 3

0

1 12
2 3

y y y 

82 4
3

 
10
3





General Strategy for Area Between Curves:

1

Decide on vertical or horizontal strips.  (Pick 
whichever is easier to write formulas for the length of 
the strip, and/or whichever will let you integrate fewer 
times.)

Sketch the curves.

2

3 Write an expression for the area of the strip.
(If the width is dx, the length must be in terms of x.
If the width is dy, the length must be in terms of y.

4 Find the limits of integration.  (If using dx, the limits 
are x values; if using dy, the limits are y values.)

5 Integrate to find area.



Day 63/64
11/19/14

Objectives:  •Use integration to calculate volumes of 
solids by cross sections 
•Use integration to calculate surface areas 
of solids of revolutions

Assignment: pg. 405 Quick Review #’s 1‐10, 
pg. 406 #’s 1‐14, 15‐41 odd, 63‐68, 
AP Review #’s 1‐3

7.3 Volumes
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Method of Slicing (p400):

1

Find a formula for A(x).

Sketch the solid and a typical cross section.

2

3 Find the limits of integration.

4 Integrate A(x) to find volume, V(x) 



0

1

2

1 2 3 4

y x Suppose I start with this curve.

My boss at the ACME Rocket 
Company has assigned me to 
build a nose cone in this shape.

So I put a piece of wood in a 
lathe and turn it to a shape to 
match the curve.



0

1

2

1 2 3 4

y x
How could we find the volume 
of the cone?

One way would be to cut it into a 
series of thin slices (flat cylinders) 
and add their volumes.

The volume of each flat 
cylinder (disk) is:

2  the thicknessr 

In this case:
r= the y value of the function

thickness = a small change 
in x = dx

  2
x dx


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0

1

2

1 2 3 4

y x
The volume of each flat 
cylinder (disk) is:

2  the thicknessr 

If we add the volumes, we get:

 24

0
x dx

4

0
 x dx 

4
2

02
x

 8

  2
x dx



This application of the method of slicing is called the 
disk method.  The shape of the slice is a disk, so we 
use the formula for the area of a circle to find the 
volume of the disk.

If the shape is rotated about the x-axis, then the formula is:

2  
b

a
V y dx 

2b

a
V x dy A shape rotated about the y-axis would be:



The region between the curve             ,              and the

y-axis is revolved about the y-axis.  Find the volume.

1x
y

 1 4y 

0

1

2

3

4

1

y x

1 1
2

3

4

1 .707
2


1 .577
3


1
2

We use a horizontal disk.

dy

The thickness is dy.
The radius is the x value of the 
function            .1

y


2
4

1

1  V dy
y


 

   
 



volume of disk

4

1

1  dy
y

 

4

1
ln y  ln 4 ln1 

0
2ln 2 2 ln 2


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0

1

2

3

4

1 2

The region bounded by
and             is 

revolved about the y-axis.
Find the volume.

2y x 2y x

The “disk” now has a hole in 
it, making it a “washer”.

If we use a horizontal slice:

The volume of the washer is:  2 2 thicknessR r  

 2 2R r dy 

outer
radius

inner
radius

2y x

2
y x

2y x

y x

2y x

2y x

 
2

24

0 2
yV y dy

        


4 2

0

1
4

V y y dy    
 

4 2

0

1  
4

V y y dy 
4

2 3

0

1 1
2 12

y y     

168
3

     
8
3





This application of the method of slicing is called the 
washer method.  The shape of the slice is a circle 
with a hole in it, so we subtract the area of the inner 
circle from the area of the outer circle.

The washer method formula is: 2 2b

a
V R r dx 



0

1

2

3

4

1 2

2y x
If the same region is 
rotated about the line x=2:

2y x

The outer radius is:

2
2
yR  

R

The inner radius is:

2r y 

r

2y x

2
y x

2y x

y x

4 2 2

0
V R r dy 

 
2

24

0
2 2

2
y y dy      

 

 
24

0
4 2 4 4

4
yy y y dy

 
      

 


24

0
4 2 4 4  

4
yy y y dy     

14 2 2
0

13 4  
4

y y y dy   
43

2 3 2

0

3 1 8
2 12 3

y y y
 

     
 

16 6424
3 3

        
8
3




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Find the volume of the region 
bounded by                  ,           , 
and             revolved about the y-
axis.

2 1y x  2x 
0y 

0

1

2

3

4

5

1 2

2 1y x 

We can use the washer method if we split it into two parts:

 25 2 2

1
2 1 2 1y dy     

21y x  1x y 

outer
radius

inner
radius

thickness
of slice

cylinder

 
5

1
4 1 4y dy   

5

1
5  4y dy  

5
2

1

15 4
2

y y     

25 125 5 4
2 2

                

25 9 4
2 2

     

16 4
2

  

8 4  12


0

1

2

3

4

5

1 2

If we take a vertical slice and revolve it about the y-axis
we get a cylinder.

cross section

If we add all of the cylinders together, we can reconstruct 
the original object.

2 1y x 

Here is another 
way we could 
approach this 
problem:



0

1

2

3

4

5

1 2
cross section

The volume of a thin, hollow cylinder is given by:

Lateral surface area of cylinder thickness

=2 thicknessr h   r is the x value of the function.

circumference height thickness  

h is the y value of the function.
thickness is dx.

 2=2 1  x x dx 

r h thicknesscircumference

2 1y x 


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0

1

2

3

4

5

1 2
cross section

=2 thicknessr h  

 2=2 1  x x dx 

r h thicknesscircumference

If we add all the cylinders from the 
smallest to the largest:

 2 2

0
2 1  x x dx 

2 3

0
2  x x dx 

2
4 2

0

1 12
4 2

x x    

 2 4 2 

12

This is called the 
shell method
because we use 
cylindrical shells.

2 1y x 



0

1

2

3

4

1 2 3 4 5 6 7 8

 24 10 16
9

y x x   

Find the volume generated 
when this shape is revolved 
about the y axis.

We can’t solve for x, 
so we can’t use a 
horizontal slice 
directly.



0

1

2

3

4

1 2 3 4 5 6 7 8

 24 10 16
9

y x x   
Shell method:

Lateral surface area of cylinder

=circumference height

=2 r h 
Volume of thin cylinder 2 r h dx  

If we take a 
vertical slice
and revolve it 
about the y-axis
we get a cylinder.


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0

1

2

3

4

1 2 3 4 5 6 7 8

 24 10 16
9

y x x   Volume of thin cylinder 2 r h dx  

 8 2

2

42 10 16  
9

x x x dx      
r

h thickness

160

3502.655 cm

Note: When entering this into the calculator, be sure to enter 
the multiplication symbol before the parenthesis.

circumference



When the strip is parallel to the axis of rotation, use the 
shell method.

When the strip is perpendicular to the axis of rotation, 
use the washer method.



Day 71/72
12/4/13

Objectives:  •Use integration to calculate volumes of 
solids of revolutions

Assignment: pg. 407 #’s 15‐41 odd, 63‐68, 
AP Review #’s 1‐3

7.3 Volumes

Quiz 7.1-7.3 Monday
Free Response Tuesday
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0

1

2

3

4

1 2

The region bounded by
and             is 

revolved about the y-axis.
Find the volume.

2y x 2y x

The “disk” now has a hole in 
it, making it a “washer”.

If we use a horizontal slice:

The volume of the washer is:  2 2 thicknessR r  

 2 2R r dy 

outer
radius

inner
radius

2y x

2
y x

2y x

y x

2y x

2y x

 
2

24

0 2
yV y dy

        


4 2

0

1
4

V y y dy    
 

4 2

0

1  
4

V y y dy 
4

2 3

0

1 1
2 12

y y     

168
3

     
8
3





This application of the method of slicing is called the 
washer method.  The shape of the slice is a circle 
with a hole in it, so we subtract the area of the inner 
circle from the area of the outer circle.

The washer method formula is: 2 2b

a
V R r dx 



0

1

2

3

4

1 2

2y x
If the same region is 
rotated about the line x=2:

2y x

The outer radius is:

2
2
yR  

R

The inner radius is:

2r y 

r

2y x

2
y x

2y x

y x

4 2 2

0
V R r dy 

 
2

24

0
2 2

2
y y dy      

 

 
24

0
4 2 4 4

4
yy y y dy

 
      

 


24

0
4 2 4 4  

4
yy y y dy     

14 2 2
0

13 4  
4

y y y dy   
43

2 3 2

0

3 1 8
2 12 3

y y y
 

     
 

16 6424
3 3

        
8
3




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Find the volume of the region 
bounded by                  ,           , 
and             revolved about the y-
axis.

2 1y x  2x 
0y 

0

1

2

3

4

5

1 2

2 1y x 

We can use the washer method if we split it into two parts:

 25 2 2

1
2 1 2 1y dy     

21y x  1x y 

outer
radius

inner
radius

thickness
of slice

cylinder

 
5

1
4 1 4y dy   

5

1
5  4y dy  

5
2

1

15 4
2

y y     

25 125 5 4
2 2

                

25 9 4
2 2

     

16 4
2

  

8 4  12


0

1

2

3

4

5

1 2

If we take a vertical slice and revolve it about the y-axis
we get a cylinder.

cross section

If we add all of the cylinders together, we can reconstruct 
the original object.

2 1y x 

Here is another 
way we could 
approach this 
problem:



0

1

2

3

4

5

1 2
cross section

The volume of a thin, hollow cylinder is given by:

Lateral surface area of cylinder thickness

=2 thicknessr h   r is the x value of the function.

circumference height thickness  

h is the y value of the function.
thickness is dx.

 2=2 1  x x dx 

r h thicknesscircumference

2 1y x 


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0

1

2

3

4

5

1 2
cross section

=2 thicknessr h  

 2=2 1  x x dx 

r h thicknesscircumference

If we add all the cylinders from the 
smallest to the largest:

 2 2

0
2 1  x x dx 

2 3

0
2  x x dx 

2
4 2

0

1 12
4 2

x x    

 2 4 2 

12

This is called the 
shell method
because we use 
cylindrical shells.

2 1y x 



0

1

2

3

4

1 2 3 4 5 6 7 8

 24 10 16
9

y x x   

Find the volume generated 
when this shape is revolved 
about the y axis.

We can’t solve for x, 
so we can’t use a 
horizontal slice 
directly.



0

1

2

3

4

1 2 3 4 5 6 7 8

 24 10 16
9

y x x   
Shell method:

Lateral surface area of cylinder

=circumference height

=2 r h 
Volume of thin cylinder 2 r h dx  

If we take a 
vertical slice
and revolve it 
about the y-axis
we get a cylinder.


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0

1

2

3

4

1 2 3 4 5 6 7 8

 24 10 16
9

y x x   Volume of thin cylinder 2 r h dx  

 8 2

2

42 10 16  
9

x x x dx      
r

h thickness

160

3502.655 cm

Note: When entering this into the calculator, be sure to enter 
the multiplication symbol before the parenthesis.

circumference



When the strip is parallel to the axis of rotation, use the 
shell method.

When the strip is perpendicular to the axis of rotation, 
use the washer method.



Objectives:  •Use integration to calculate lengths of 
curves in a plane

Assignment: pg. 416 #’s 1‐18, 32‐37

7.4 Lengths of Curves
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If we want to approximate the 
length of a curve, over a short 
distance we could measure a 
straight line.

ds

dx

dy

By the pythagorean theorem:

2 2 2ds dx dy 

2 2ds dx dy 

2 2ds dx dy   We need to get dx out from 
under the radical.

2 2
2

2 2

dx dyS dx
dx dx

 
  

 


2

21  dyL dx
dx

 
  

 


2

1  
b

a

dyL dx
dx

    
 

Length of Curve (Cartesian)

Lengths of Curves:



0

1

2

3

4

5

6

7

8

9

1 2 3

2 9y x  

0 3x 

Example: 2 9y x  

2dy x
dx

 

2
3

0
1  dyL dx

dx
    
 

 
3 2

0
1 2  L x dx  

3 2

0
1 4  L x dx 

Now what?  This doesn’t fit any formula, and 
we started with a pretty simple example!

The TI-89 gets:

 ln 37 6 3 37
4 2

L


  9.74708875861


0

1

2

3

4

5

6

7

8

9

1 2 3

2 9y x  

0 3x 

Example:

The TI-89 gets:

 ln 37 6 3 37
4 2

L


  9.74708875861

2 2 29 3 C 
281 9 C 

290 C

9.49C 

The curve should be 
a little longer than 
the straight line, so 
our answer seems 
reasonable.

If we check the length of a straight line:


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0

1

2

3

4

5

6

7

8

9

1 2 3

2 9y x  

0 3x 

Example:

You may want to let the calculator find the 
derivative too:

( ) ^ 2 9x  STO Y ENTER

( (1 ( , ) ^ 2), ,0,3)d y x x

 
2

3

0
1  d y dx

dx
   
 

Important:
You must delete 
the variable y
when you are 
done!

F4 4 Y ENTER

ENTER



Example:

0

1

-1 1

2 2 1x y 
2 21y x 

21y x 

2
1

1
1  dyL dx

dx

    
 

3.1415926536





If you have an equation that is easier to solve for x than 
for y, the length of the curve can be found the same way.

0

1

2

3

1 2 3 4 5 6 7 8 9

2x y 0 3y 

^ 2y STO X ENTER

2
3

0
1  dxL dy

dy
 

   
 



( (1 ( , ) ^ 2), ,0,3)d x y y 9.74708875861

Notice that x and y are reversed.


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Don’t forget to clear the x and y variables when you are done!

F4 4 Y ENTERX , 



Day 79
12/16/13

Objectives:  •Model problems involving rates of change 
in a variety of applications

Assignment: pg. 425 #’s 1‐6, 17, 36‐39, 
AP Review #’s 1‐3

7.5 Applications from Science and Stats

Chapter 7 Test- Tuesday

Review: Hooke’s Law: F kx

A spring has a natural length of 1 m.
A force of 24 N stretches the spring to 1.8 m.

a  Find k: F kx
 24 .8k

30 k 30F x

b How much work would be needed to stretch the spring 
3m beyond its natural length?

   
b

a
W F x dx 

3

0
30  W x dx 

32

0
15W x

135 newton-metersW 

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Over a very short distance, even a non-constant force 

doesn’t change much, so work becomes:  F x dx

If we add up all these small bits of work we get:

   
b

a
W F x dx 



A leaky 5 lb bucket is raised 20 feet

The rope weights 0.08 lb/ft.

The bucket starts with 2 gal (16 lb) of water 
and is empty when it just reaches the top.

Work:

Bucket: 5 lb  20 ft 100 ft-lb 
Water: The force is proportional to

remaining rope.

  20 16
20

xF x 
 

5

4 416
5

x 

At 0, 16x F 
At 20, 0x F 

Check:

0

20

   
b

a
W F x dx 

20

0

416 x 
5

dx 


A leaky 5 lb bucket is raised 20 feet

The rope weights 0.08 lb/ft.

The bucket starts with 2 gal (16 lb) of water 
and is empty when it just reaches the top.

Work:

Bucket: 5 lb  20 ft 100 ft-lb 
Water:

0

20

20

0

416 x 
5

W dx 
20

2

0

216
5

W x x 

22 2016 20
5

W 
   160 ft-lb


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A leaky 5 lb bucket is raised 20 feet

The rope weights 0.08 lb/ft.

The bucket starts with 2 gal (16 lb) of water 
and is empty when it just reaches the top.

Work:

Bucket: 5 lb  20 ft 100 ft-lb 
Water:

0

20

160 ft-lbW 

Rope:     20 0.08F x x 

At 0, 1.6 lbx F 
At 20, 0x F 

Check:

 
20

0
1.6 .08  W x dx 

202

0
1.6 .04W x x  16 ft-lb

Total: 100 160 16 276 ft-lb   

5 ft

10 ft

4 ft

5 ft

10 ft

10

0

4 ft

dx

I want to pump the water out of this 
tank.  How much work is done?

w Fd
The force is the weight of the water.  
The water at the bottom of the tank 
must be moved further than the 
water at the top.

Consider the work to move one 
“slab” of water:

weight of slab density volume 
262.5 5 dx  

1562.5  dx

distance 4x  

Pg. 421

5 ft

10 ft

4 ft

5 ft

10 ft

10

0

4 ft

dx

I want to pump the water out of this 
tank.  How much work is done?

w Fd
weight of slab density volume 

262.5 5 dx  

1562.5  dx

distance 4x 

 work 4 1562.5  x dx 

forcedistance

 
10

0
4 1562.5  W x dx 


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5 ft

10 ft

4 ft

5 ft

10 ft

10

0

4 ft

dx

I want to pump the water out of this 
tank.  How much work is done?

 
10

0
4 1562.5  W x dx 

10
2

0

11562.5 4
2

W x x     

 1562.5 50 40W  

441,786 ft-lbW 

A 1 horsepower pump, 
rated at 550 ft-lb/sec, 
could empty the tank 
in just under 14 
minutes!

 work 4 1562.5  x dx 

forcedistance



10 ft

2 ft

10 ft
A conical tank is filled to within 2 ft of 
the top with salad oil weighing 57 lb/ft3.

How much work is required to pump 
the oil to the rim?

Consider one slice (slab) first:

1
2

x y

 5,10
10 y

y

x

 yW F d 

  density volume distanceyW   

 
8 2

0

110 57
4

W y y dy  

 yW  57
21

2
y dy

  
  

   
 10 y2y x



10 ft

2 ft

10 ft
A conical tank if filled to within 2 ft of 
the top with salad oil weighing 57 lb/ft3.

How much work is required to pump 
the oil to the rim?

1
2

x y

 5,10
10 y

y

x
 

8 2

0

110 57
4

W y y dy  

 yW  57
21

2
y dy

  
  

   
 10 y

2y x 8 2 3

0

57 10  
4

W y y dy
 

84
3

0

57 10
4 3 4

yW y  
  

  
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10 ft

2 ft

10 ft
A conical tank if filled to within 2 ft of 
the top with salad oil weighing 57 lb/ft3.

How much work is required to pump 
the oil to the rim?

1
2

x y

 5,10
10 y

y

x
2y x

8 2 3

0

57 10  
4

W y y dy
 

84
3

0

57 10
4 3 4

yW y  
  

 

57 5120 4096
4 3 4

W      

30,561 ft-lbW 


What is the force on the bottom of 
the aquarium?

3 ft

2 ft

1 ft

Force weight of water
density volume 

3

lb62.5 2 ft 3 ft 1 ft
ft

   

375 lb



If we had a 1 ft x 3 ft plate on 
the bottom of a 2 ft deep 
wading pool, the force on the 
plate is equal to the weight of 
the water above the plate.

3

lb62.5 
ft

density

2 ft

depth

pressure

3 ft 1 ft 

area

375 lb

All the other water in the 
pool doesn’t affect the 
answer!


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What is the force on the front face
of the aquarium?

3 ft

2 ft

1 ft

Depth (and pressure) are not constant.

If we consider a very thin horizontal 
strip, the depth doesn’t change much, 
and neither does the pressure.

3 ft

2 ft
2

0

y
dy

62.5 3 yF y dy  

density
depth

area
2

0
62.5 3 F y dy  

2
2

0

187.5
2

F y 375 lb

It is just a 
coincidence 
that this 
matches the 
first answer!



6 ft

3 ft

2 ft

A flat plate is submerged vertically 
as shown.  (It is a window in the 
shark pool at the city aquarium.)

Find the force on one side of the 
plate.

Depth of strip:  5 y

Length of strip:

y x
x y

2 2x y

Area of strip: 2  y dy

 62.5 5 2  yF y y dy 

density depth area

 
3

0
62.5 5 2  F y y dy 

3 2

0
125 5  F y y dy 

3
2 3

0

5 1125
2 3

F y y    

1687.5 lbF 

We could have put 
the origin at the 
surface, but the math 
was easier this way.



  2 323

68%

95%

99.7%

34%

13.5%

2.35%

Normal Distribution:
For many real-life events, a 
frequency distribution plot 
appears in the shape of a 
“normal curve”.

Examples:

heights of 18 yr. old men

standardized test scores

lengths of pregnancies

time for corn to pop

The mean       (or      ) is in the 
middle of the curve.  The 
shape of the curve is 
determined by the standard 
deviation     .

 x



 mu

x x-bar

 sigma

“68, 95, 99.7 rule”


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  2 323

34%

13.5%

2.35%

Normal Distribution:

“68, 95, 99.7 rule”

The area under the curve 
from a to b represents the 
probability of an event 
occurring within that range. 

In stat we used z-scores and a table of values to determine 
probabilities.  If we know the equation of the curve we can 
use calculus (and our calculator) to determine probabilities:

    2 2/ 21
2

x
f x e

 

 
 


Normal Probability 
Density Function:
(Gaussian curve) 

Normal Distribution:

    2 2/ 21
2

x
f x e

 

 
 


Normal Probability 
Density Function:
(Gaussian curve)

The good news is that you do not have to memorize this 
equation!

Example 7 on page 424 shows how you could integrate 
this function to predict probabilities.

In real life, statisticians rarely see this function.  They use 
computer programs or graphing calculators with statistics 
software to draw the curve or predict the probabilities.




	APCalculusStuffYouMustKnowCold.pdf
	Stuff You Must Know Cold Cover.pdf
	Stuff You Must Know Cold.pdf
	TOU_Credits_2015.pdf
	Slide Number 1





