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STUFF YOU MUSTKNOW COLD . ..

Alternate Definition of the Derivative:

) = i LD~ S©

X —>C X—C

Basic Derivatives

d

a(x”) = nx™1
d
a(sin X) = Cos x
d
a(cosx) = —sin x
d
— (tanx) = sec* x
dx( ) 2
— (cotx) = —cscx
dx( ) 2
d
a(sec X) =secxtanx
d
Tx (cscx) = —cscx cotx
1 du
—(ln u) =— Tk
—(e”) _ du
dx

Where u is a function of x,
and a is a constant.

Intermediate Value Theorem

If the function f(x) is continuous on [a, b],and y is a
number between f(a) and f(b), then there exists at
least one number x = c in the open interval (a, b)

suchthat f(c) =y. »

Mean Value Theorem

If the function f(x) is continuous on [a, b], AND the
first derivative exists on the interval (a, b) then there
is at least one number x = c in (a, b) such that

f()_f(b) f(a) ¥

b—a Tangent Lm:.,q_‘_. -

-

.,,J’_ﬁ-./ _"___I'(R.:l
vl E __:-2
/ L Secant
r ' Line
A :
@ [4 b

Differentiation Rules

Chain Rule:
d dy du
—fWl=f (u)— OR & dx o
Product Rule
—(uv) —u + v ORuv + vu'
Quotient Rule:

du dv ,

i(ﬂ) — Yax Yax gp DM UV
dx \v v2 v

Rolle’s Theorem

If the function f(x) is continuous on [a, b], AND the
first derivative exists on the interval (a, b) AND

f(a) = f(b), then there is at least one number x = ¢
in (a,b) such that f'(c) = 0.

Extreme Value Theorem

If the function f(x) is
continuous on [a, b], ~
then the function is
guaranteed to have
an absolute maximum ™ i\
and an absolute \ /
minimum on the 1
interval. = P T




Derivative of an Inverse Function:

If f has an inverse function g then:
1

9O = Fm

derivatives are reciprocal slopes

Implicit Differentiation

Remember that in implicit differentiation
. d . .-
you will have a é for each y in the original

. : d
function or equation. Isolate the ﬁ. If you
. . d?
are taking the second derivative d—szl, you
will often substitute the expression you
found for the first derivative somewhere
in the process.

First Derivative:
f'(x) > 0 function is increasing.
f'(x) < 0 function is decreasing.

f'(x) = 0 or DNE: Critical Values at x.

Relative Maximum: f (x) = 0 or DNE and sign of
f'(x) changes from +to —.

Relative Minimum: f'(x) = 0 or DNE and sign of
f'(x) changes from — to +.

Absolute Max or Min:
MUST CHECK ENDPOINTS ALSO

The maximum value is a y-value.

Average Rate of Change ARoC:
_f®) - f(@

Mgec bh—a

Instantaneous Rate of Change IRoC:

fx+h) - f(x)

Megn = f,(x) = }llir(l) A

Second Derivative:
f'" (x) > 0 function is concave up.
f"(x) < 0 function is concave down.

f'(x) = 0 and sign of f"'(x) changes, then there is a
point of inflection at x.

Relative Maximum: " (x) < 0

Relative Minimum: f"'(x) > 0

Write the equation of a tangent line

Curve Sketching And Analysis
y = f(x) must be continuous at each:

Critical point: 3—3; = 0 or undefined

LOOK OUT FOR ENDPOINTS
Local minimum:

dy d?y
—, goes (= 0,+)or (—,und,+) OR > 0

Local maximum:

2
% goes (+,0,—) or (+,und,—) OR 22X <0

dx?

Point of inflection: concavity changes

2
% goes from (+,0,-), (—,0,+), (+,und,—), OR

(= und,+)

at a point:

You need a slope (derivative) and a point.

Yo — Y1 =m(x; — xq)

Horizontal Asymptotes:

1. If the largest exponent in the

numerator is < largest exponent in the

denominator then lir+n f(x)=0.
x—+coo

2. If the largest exponent in the

numerator is > the largest exponent in the

denominator then lir_P f(x) = DNE
x—+oo

3. If the largest exponent in the
numerator is = to the largest exponent in
the denominator then the quotient of the

leading coefficients is the asymptote.
lim f(x) = 2
x—+oo b




ONLY FOUR THINGS YOU CAN DO ON A
CALCULATOR THAT NEEDS NO WORK SHOWN:

1. Graphing a function within an arbitrary view
window.

2. Finding the zeros of a function.

. Computing the derivative of a function numerically.

4. Computing the definite integral of a function
numerically.

w

LOGARITHMS
Definition:
InN=p oeP=N
lne=1
In1=0

In(MN) =InM +InN
M

ln(ﬁ) =InM —InN

p -InM = In MP

Distance, Velocity, and Acceleration

x(t) = position function
v(t) = velocity function
a(t) =acceleration function

The derivative of position (ft) is velocity (ft/sec);
the derivative of velocity (ft/sec) is acceleration

(ft/sec?).

The integral of acceleration (ft/sec?) is velocity
(ft/sec) ; the integral of velocity (ft/sec) is position
(f0).

Speed is | velocity |

If acceleration and velocity have the same sign,
then the speed is increasing, particle is moving
right.

If the acceleration and velocity have different
signs, then the speed is decreasing, particle is
moving left.

Displacement = fttofv(t) dt

. _ rfinaltime
Distance = [ .. " |v(t)| dt
Average Velocity

final position — initial position  Ax
B T oAt

total time

EXPONENTIAL GROWTH and DECAY:

When you see these words use: y = Ce*t

“y is a differentiable function of t such that
y >0andy' = ky"“

“the rate of change of y is proportional to y”
When solving a differential equation:

1. Separate variables first

2. Integrate

3. Add +C to one side

4. Use initial conditions to find “C”

5. Write the equation if the form of y = f(x)

“PLUS A CONSTANT”

The Fundamental Theorem of Calculus

b
[ rax=r - F@

Where F'(x) = f(x)

The Accumulation Function

Fo) = f(a) + j () dt

The total amount, F(x), at any time x , is the
initial amount, f (a), plus the amount of change
between t = a and t = x, given by the integral.

Corollary to FTC

gu)

d du
= | rod=r(ge)




Mean Value Theorem for Integrals:
The Average Value

If the function f(x) is continuous on [a, b] and the
first derivative exists on the interval (a, b), then
there exists a number x = c on (a, b) such that

b b
1 J, f()dx
fong = = [ PG = 2=
a
This value f(¢) is the “average value” of the
function on the interval [a, b].

Vi
The rectangle has the same

area a5 the shaded region
umder the curee.

Riemann Sums

A Riemann Sum means a rectangular
approximation. Approximation means that
you DO NOT EVALUATE THE INTEGRAL;
you add up the areas of the rectangles.

Trapezoidal Rule
For uneven intervals, may need to

calculate area of one trapezoid at a time
and total.

1
ATrap = Eh[bl + bz]

For even intervals:

b—a y0+2y1+2y2+

b
j [ dx = = +2Yn_1 + Vn
a

Values of Trigonometric Functions for

Common Angles
0 sin @ cos 6 tan 6
0 0 1 0
i L V3 V3
6 2 ) 3
T2 VZ )
4 2 2
T V3 1
= — - 3
3 2 2 V3
n 1 O n n
— (0e]
2
T 0 -1 0

Must know both inverse trig and trig values:

T

EX. tan>=1 andsin™? (l) = -
4 2) 7 3
ODD and EVEN:
sin(—x) = —sinx (odd)

cos(—x) = cosx (even)

Trigonometric Identities
Pythagorean Identities:
sin?6 + cos?0 =1

The other two are easy to derive by dividing
by sin? 6 or cos? 6.

1+ tan? 8 = sec?d

cot?6 + 1 = csc? 6

Double Angle Formulas:

sin2x = 2 sinx cos x

cos 2x = cos?x —sin?x =1 — 2sin’x

Power-Reducing Formulas:

1
coszx=§(1+c052x )

1
sin?x = 5 (1 — cos 2x)

Quotient Identities:

sin 6 cos @
tanf = cotf = —
cosf@ sin @

Reciprocal Identities:

1 .
cscx =—— or sinxcscx =1
sin x

1
secx =—— or cosxsecx =1
CosXx




Basic Integrals

fdu=u+C

un+1
ju"du= +Cn #+ -1
n+1
du
f—=1n|u|+ C
u
je“du=e”+ Cc
au
fa”duz + C
Ina

J-sinudu= —cosu+C

jcosudu=sinu+C
ftanuduz —In|cosu + C|
fcotu du = In|sinu| + C
fsecu du = In|secu + tanu| + C
J-cscu du = —In|cscu + cotu| + C
J-seczudue=tanu+C
J-csczudu= —cotu+C
fsecutanu du =secu+C

fcscucotu du= —cscu+2C

Area and Solids of Revolution:

NOTE: (a, b) are x-coordinates and
(c,d) are y-coordinates

Area Between Two Curves:
Slices 1 to x-axis: A = f:[f(x) — g(®)] dx

Slices 1 to y-axis: A= fcd[f(y) - gO]dy
Volume By Disk Method:
About x-axis: V = nf;[R(x)]2 dx
About y-axis: V = nde[R(y)]2 dy
Volume By Washer Method:
: b ) 5
About x-axis: V = nfa ([R(x)]? = [r(x)]?) dx
. _ d 2 2
Abouty-axis: V = m [ ([ROD)]* — [r(]?) dy
Volume By Shell Method:
About x-axis: V = 2 nfcdy [R(y)] dy

About y-axis: V = 2 nf:x [R(x)] dx

General Equations for Known Cross Section
where base is the distance between the two
curves and a and b are the limits of
integration.

SQUARES: V = f;(base)2 dx
TRIANGLES
EQUILATERAL: V = ? [ (base)? dx

ISOSCELES RIGHT: V = = | " (base)? dx

RECTANGLES: V = [ (base) - h dx
where h is the height of the rectangles.

SEMI-CIRCLES: V = Z | *(radius)? dx

where radius is ¥ distance between the two
curves.




MORE DERIVATIVES: MORE INTEGRALS:
d . _lu] 1 du d -1 -1 du u
—|sin”T —| = — —|[cosT x| = — cin—1
dx[ a va2-u?2 dx dx[ ] 1— x2 ?— sin""—+ C
vac—u a
d _q1u a du d -1 -1
— |tan —]= — — [cot™ " x| =
dx[ a a’?+u? dx dx [ ] 1+x2 du _ 1 -1
1 3 —tan + C
a“+ u a
2 lsec1 u] = = du 2 [esclx] = ——
dx a |[ulvuz-a? dx dx [x|[Vx2-1 du 1 lu|
- - -1
J > == asec 2
d uy_ u du d _ 1 uvu? — a
dx (@) =a lnadx dx [logax] ~ xlna
- __}"
y ¥ _
v
i
1T 1
X iy
X X } } {
f t t >| F } T { 1 |
-! ! -1 1 —I1 1
1 -1 -1
_ ) — 23 _
y=x y=x y=x y = |x|
¥ ¥
3 v
2+ N Nl .
1+ I | I x‘ 1 | } } } g I / \ I ):_
] -1 1 2 4 1 2 3 R PN 2
1 ,
y=+x y=— y =sinx y= cosx
X
_ - v
. y
/ |
1__ . =
| 2 ‘ .l
14+ t
-1
M j ' =T B 1 2
. 1
y=e y=Inx y=— y = Ja?z— x2



Extrema, Increasing/Decreasing Functions, the First Derivative Test and the
Second Derivative Test

Finding Extrema on a Closed Interval [a,b]

1) Find the critical numbers of f(x).

2) Evaluate f(x) at each critical number.

3) Evaluate f(x) at the endpoints.

4) The least value is a minimum. The greatest value is the maximum.

Determining if f(x) is Increasing or Decreasing on (a,b)

1) Find the critical numbers of f(x).
2) Determine the intervals of f(x) to test.

3) Determine the sign of f'(x) at one value in the intervals.
4) Iff'(x) > 0, then f(x) is increasing on the interval (a,b).

5) Iff'(x) <0, then f(x) is decreasing on the interval (a,b).
6) Iff'(x) =0, then f(x) is constant on (a,b).

increaging decregsing increasing

The First Derivative Test (c is a critical number of f(x))

1) If f'(x) changes from negative to positive at c, then f(c) is a relative (local) minimum of f(x)
2) Iff'(x) changes from positive to negative at c, then f(c) is a relative (local) maximum of f(x).

local and global

local 4 maximum
maximum -
-
_ » _
local
minimum
L ]

Definition of Concavity

1) f(x) is concave upward if f'(x) is increasing on the interval I. Carve sy et
2) f(x) is concave downward if f'(x) is decreasing on the interval I. -::mxmlmmlwmf

y = f(x)

Transiticn betwern concave upward
and conerve downward:
en inflection poim
Transitics belwoon concave downward
ard coneave vpRard: an inlivelion poinl

Fula suppaonTs Clrve:
Concave Lprward



Determining if f(x) is Concave Up or Down

1) Find f"(x) and locate the points at which f'(x) = 0 or is undefined.
2) Use the points found in #1 to determine your test intervals.

3) Evaluate one test point from each of your intervals.

4) 1ff'(x) > 0, then f(x) is concave up on the interval.

5) Iff'(x) <0, then f(x) is concave down on the interval.

Points of Inflection

Points of inflection occur when the graph of f(x) changes from concave up to concave down
(or vice versa). Points of inflection only occur at values where f*(x) = 0 or is undefined.
NOTE: not all values of f**(x) = O/undefined are points of inflection, therefore we must
always check these points.

inflection point

L L I
concave concave
up down

L

Second Derivative Test (c is a critical number)

1) Find the critical numbers of f(x) {f'(x) = 0 or undefined}.

2) Iff'(c) > 0, then f(c) is a relative minimum because f(c) is concave up.

3) Iff'(c) <0, then f(c) is a relative maximum because f(c) is concave down.
4) 1ff"(c) =0, then the test fails. Use the first derivative test.



8.

9.

AY

10 Things to know for the Free Response Questions

(And Mrs. Berkson'’s Tests)

You will be given 6 Free Response questions. For two questions you are
allowed to use the graphing calculator and for the remaining four there is no
calculator allowed. Each Free Response Question is worth 9 points. Not all
parts are weighted equally.
Always round to 4 decimal places. (AP only requires 3 but 4 will always get
you points).
No simplification is needed; €° — 4 + 6 is okay! If you simply and you simplify
wrong you will be awarded no points!
If you think it, write it. Never give a bald answer without any supporting
work. If just the answer were okay then it would be a multiple-choice
question, not free response.
Answer the question; don’t say too much. If you say something correctly and
then begin to say additional wrong information you will lose points.
Never erase. Graders are trained to ignore crossed out work.
Always bring the problem back to Calculus. Never use “it” or “the function”
when justifying an answer. You must use the name of the function you are
describing. Calculus always gives you the points. Pre-Calculus will sometimes
give you the points.
Ex. f (x)is positive (Calculus) vs.

f(x) is increasing (Pre-Calculus)

Don’t use calculator syntax. If you use your calculator, describe it clearly in
math terms, not in calculator terms.
Watch for linkage issues. Use arrows instead of equal signs.

10. Don’t write f(x)=2(1.5)+ 3when you mean f(1.5)=2(1.5)+ 3.



AP Calculus - Final Review Sheet

When you see the words ....

This is what you think of doing

1. Find the zeros

Set function = 0, factor or use quadratic equation if
quadratic, graph to find zeros on calculator

2. Find equation of the line tangent to f(x) on [a,b]

Take derivative - f'(a)=m and use
Y=y =mx-x)

3. Find equation of the line normal to f(x) on [a,b]

Same as above but m = —

1
f'(a)

4. Show that f(x) is even

Show that f(-x)= f(x) - symmetric to y-axis

5. Show that f(x) is odd

Show that f(-x)=—f(x) - symmetric to origin

6. Find the interval where f(x) is increasing

Find f'(x), set both numerator and denominator to
zero to find critical points, make sign chart of f'(x)
and determine where it is positive.

7. Find interval where the slope of f(x) is increasing

Find the derivative of f'(x)= f "(x), set both
numerator and denominator to zero to find critical
points, make sign chart of f ”(x) and determine where
it is positive.

8. Find the minimum value of a function

Make a sign chart of f'(x), find all relative minimums
and plug those values back into f(x) and choose the
smallest.

9. Find the minimum slope of a function

Make a sign chart of the derivative of f'(x)= f"(x),
find all relative minimums and plug those values back
into f'(x) and choose the smallest.

10. Find critical values

Express f'(x) as a fraction and set both numerator
and denominator equal to zero.

11. Find inflection points

Express f"(x) as a fraction and set both numerator
and denominator equal to zero. Make sign chart of
f"(x) to find where f"(x) changes sign. (+ to - or —
to +)

12. Show that lim f(x) exists Show that lim f (x)= lim f (x)
13. Show that f(x) is continuous Show that 1) lim f (x) exists ( lim f (x)= lim f(x))

Xx—a~ x—a*

2) f(a) exists
3) 1Ln1af(x): f(a)

14. Find vertical asymptotes of f(x)

Do all factor/cancel of f(x) and set denominator = 0

15. Find horizontal asymptotes of f(x)

Find lim f(x) and lim f(x)

X—>00 X—>—00

16. Find the average rate of change of f(x) on [a,b]

Find fb)-fla)

—da

17. Find instantaneous rate of change of f(x) at a

Find f'(a)




18. Find the average value of f(x) on [a,b] b
_[ f(x)dx
Find &——
b-a

19. Find the absolute maximum of f(x) on [a,b] Make a sign chart of f'(x), find all relative
maximums and plug those values back into f(x) as
well as finding f(a)and f(b) and choose the largest.

20. Show that a piecewise function is differentiable First, be sure that the function is continuous at x =a.

at the point a where the function rule splits Take the derivative of each piece and show that
lim '(x)= lim £'(x)
21. Given s(t) (position function), find v(t) Find v(t)=s'(t)
22. Given v(t), find how far a particle travels on |a,b ¢
© P 0] Find [fv(t)dt
23. Find the average velocity of a particle on |a,b
g y p [ ] Tv(t)dt (b) S(a)
Find -2 =
b—a —
24. Given v(t), determine if a particle is speeding up | Find v(k)and a(k). Multlplytheir signs. If both
att=k positive, the particle is speeding up, if different signs,

then the particle is slowing down.

25. Given v(t) and s(0), find s(t) s(t)= | v(t)dt+C Plugint=0tofindC

26. Show that Rolle’s Theorem holds on [a,b] Show that f is continuous and differentiable on the
interval. If f(a)= f (b), then find some c in [a,b]
such that f’(c)z 0.

27. Show that Mean Value Theorem holds on [a,b] | Show that f is continuous and differentiable on the
interval. Then find some c such that

fre)-— L f (b) f (a)

28. Find domain of f(x) Assume domaln is (—oo,oo). Restrictable domains:
denominators # 0, square roots of only non negative
numbers, log or In of only positive numbers.

29. Find range of f(x) on [a,b] Use max/min techniques to rind relative max/mins.
Then examine f (a) f (b)

30. Find range of f(x) on (~oo,00) Use max/min techniques to rind relative max/mins.
Then examine lim f (x)

31. Find f'(x) by definition f(x+h)-f(x

() by f(x)—llm ( ) ()or
h—0
f(x f a
f (x)—llm () ()
32. Find derivative of inverse to f(x) at x=a dy

Interchange x with y. Solve for ™ implicitly (in terms
X

of y). Plug your x value into the inverse relation and

solve fory. Finally, plug that y into your %
X




33.

y is increasing proportionally to y

(;_i' =ky translatingto y = Ce

kt

34. Find the line x = cthat divides the area under ¢ ¢

f(x) on [a,b] to two equal areas _[ f(x)x = I f (x)ix
35. aj f(t)dt = 2" FTC: A is f

dx : Answer is f(x)
36.

2" FTC: Answer is f (u)z—u
X

37.

The rate of change of population is ...

P _
=

38.

The line y = mx+b is tangent to f(x) at (x,,y,)

Two relationships are true. The two functions share
the same slope (m = f ’(x)) and share the same y value

at x,.

39.

Find area using left Riemann sums

A =base[X, + X, + X, +...+ X, |

40.

Find area using right Riemann sums

A = base[x, + X, + X, +...+ X, |

41.

Find area using midpoint rectangles

Typically done with a table of values. Be sure to use
only values that are given. If you are given 6 sets of
points, you can only do 3 midpoint rectangles.

42.

Find area using trapezoids

A:ba—z‘c'e[x0 +2X, 42X, et 2%,y X, |

This formula only works when the base is the same. If
not, you have to do individual trapezoids.

43.

Solve the differential equation ...

Separate the variables — x on one side, y on the other.
The dx and dy must all be upstairs.

44,

Meaning off f(t)dt

The accumulation function — accumulated area under
the function f(x) starting at some constant a and
ending at x.

45.

Given a base, cross sections perpendicular to the
X-axis are squares

The area between the curves typically is the base of

b
your square. So the volume is I(basez )jx

46.

Find where the tangent line to f(x) is horizontal

Write f'(x) as a fraction. Set the numerator equal to
zero.

47.

Find where the tangent line to f(x) is vertical

Write f'(x) as a fraction. Set the denominator equal
to zero.

48.

Find the minimum acceleration given v(t)

First find the acceleration a(t)=v'(t). Then minimize
the acceleration by examining a'(t).

49.

Approximate the value of f(0.1) by using the
tangent linetofat x=0

Find the equation of the tangent line to f using

y—y, =m(x—x,) where m= f'(0) and the point is
(0, (0)). Then plug in 0.1 into this line being sure to
use an approximate (=)sign.




50. Given the value of F(a) and the fact that the anti-
derivative of f is F, find F(b)1

Usually, this problem contains an antiderivative you
cannot take. Utilize the fact that if F(x)is the

F(a). So

solve for F(b) using the calculator to find the definite
integral.

b
antiderivative of f, then J' F(x)x = F(b)-

51. Find the derivative of f(g(x))

f'(g(x))-g'(x)

52. Given I x)dx, find I +k]dx

'T[f(x)+ k]dx = .T f(x)tlx+j.kdx

a

53. Given a picture of f'(x), find where f(x) is
increasing

Make a sign chart of f'(x) and determine where
f'(x) is positive.

54. Given v(t) and s(0), find the greatest distance
from the origin of a particle on [a,b]

Generate a sign chart of v(t) to find turning points.
Then integrate v(t) using s(0) to find the constant to
find s(t). Finally, find s(all turning points) which will

give you the distance from your starting point. Adjust
for the origin.

55. Given a water tank with g gallons initially being
filled at the rate of F(t) gallons/min and emptied
at the rate of E(t) gallons/min on [t,,t, ], find
a) the amount of water in the tank at m minutes

g+ [(F@)-

56. b) the rate the water amount is changing at m

57. c) the time when the water is at a minimum

F(m)— E(m)=0, testing the endpoints as well.

58. Given a chart of xand f(x) on selected values

between a and b, estimate f'(c) where c is
between a and b.

Straddle c, using a value k greater than ¢ and a value h

f(k)- f(h)

less than c. so f'(c)~ o

59. Given j_y , draw a slope field
X

dy

Use the given points and plug them into ol drawing
X

little Iines with the indicated slopes at the points.

60. Find the area between curves f(x),g(x) on [a,b]

(x)pix, assuming that the f curve is

A= I

above the g curve.

61. Find the volume if the area between f(x),g(x) is
rotated about the x-axis

Vv =7ri[(f

curve is above the g curve.

x))2 ~(g (x))ﬂdx assuming that the f




BC Problems

62. Find lim—C) it 1im £ (x) = limg(x) =0
X0 g(x) X—>e0 X—0

Use L’Hopital’s Rule.

63. Find [ f(x) d

lim _T f (x)dx

0

64. d—P:LP(M—P) or d—P:kP[ —ij
d M dt M

Signals logistic growth.

im% _o=M=p
t—o0 dt

65. Find J.ziwhere x> +ax+b
X +ax+b

factors

Factor denominator and use Heaviside partial fraction
technique.

66. The position vector of a particle moving
in the plane is r(t) = <x(t), y(t)>
a) Find the velocity.

v(t) =(x'(1), y'(t))

67. b) Find the acceleration.

a(t) =(x"(t), y"(t))

68. c) Find the speed.

o) =[x + ]

69. a) Given the velocity vector
v(t) =(x(1), y(1))
and position at time 0, find the position
vector.

s(t)= | x(t)dt+ | y(t)dt+C

Use s(O) to find C, remembering it is a vector.

70. b) When does the particle stop?

V(t)=0—x(t)=0 AND y(t)=0

71. c) Find the slope of the tangent line to
the vector at t,.

This is the acceleration vector at t,.

72. Find the area inside the polar curve
r=f(6).

A:%:[ [f ()] do

73. Find the slope of the tangent line to the
polar curve r= f(6).

dy
x:rcose,yzrsinezﬂ:ﬁ
dx dx

do

74. Use Euler’s method to approximate
f(1.2) given % (X0:Yo)=(1), and
X

Ax=0.1

dy = %(AX) ynew = yold + dy

75. Is the Euler’s approximation an
underestimate or an overestimate?

. dy d?y . : .
Look at sign of I andF in the interval. This gives you
X X

increasing.decreasing/concavity. Draw picture to ascertain




answer.

76. Find J x"e™dx where a, n are integers

Integration by parts, J udv=uv- _| vdu+C

77. Write a series for x"cosx where n is an
integer

2 X4 X6

cosx=1-—+———+
21 41 6!

Multiply each term by x"

78. Write a series for In(1+ x) centered at
x=0.

Find Maclaurin polynomial:

R()=10) FOR+ "( ), 'O, f(:!(o)xn

31

79. Zn—lp converges if.....
n=1

p>1

80. If f(X)=2+6x+18x*+54x%+..., find

i

Plug in and factor. This will be a geometric series:

war“:i
27

81. Find the interval of convergence of a
series.

Use a test (usually the ratio) to find the interval and then test
convergence at the endpoints.

82. Let S,be the sum of the first 4 terms of an
alternating series for f(x). Approximate
|f(x)=S,|

This is the error for the 4™ term of an alternating series which
is simply the 5™ term. It will be positive since you are looking
for an absolute value.

|
83. Suppose f™M(x)= % Write the

first four terms and the general term of a
series for f(x) centered at x=c

You are being given a formula for the derivative of f(x).

"(c . O "
(-1 1O D of +.ot-— Do)

84. Given a Taylor series, find the Lagrange
form of the remainder for the n™ term
where n is an integer at x = C.

You need to determine the largest value of the 5™ derivative of
f at some value of z. Usually you are told this. Then:

(1)
RO

85. f(x):1+ x+XE2+X§+...

f(x)=¢"

" 2on+l
86. f(x)= x—X—3+ X5+. &
3! 5l (2n+1)|

f(x): sinx

87. f(x):l——2+x—4——6 (1)

ey’

f (x): COSX

88. Find I (sinx) (cosx) dx where m and n
are integers

If m is odd and positive, save a sine and convert everything
else to cosine. The sine will be the du. If n is odd and positive,
save a cosine and convert everything else to sine. The cosine
will be the du. Otherwise use the fact that:




SI? X = 1-cosx and cogx= 1+co2x
89. Given x = f (1) y=g(t) find L7 dy
dx dy _dt
dx %
dt
: - d%y d LdyJ
90. Given x=f(t)y=q(t) find =L
©y=90) dx? dzy_i[ﬂ} dt| dx
dx? dx[dx]  dx
dt

91.

Given f(x), find arc length on [a,b]

L= T1/1+ [f ’(X)de

a

92.

X = f (t) y= g(t) find arc length on

it

-]

t 2 2
&) (3
J\ldt) "Lt

93.

Find horizontal tangents to a polar curve

r=1(0)

X=rcosd,y=rsind
Find where rsin @=0 where rcos@=0

94.

Find vertical tangents to a polar curve

r=1(9)

X=rcosd,y=rsiné
Find where rcos@=0 where rsin@=0

95.

Find the volume when the area between
y=f (X) x =0,y =0 is rotated about the
y-axis.

Shell method: V = Zrcjl radius- height dx where b is the root.

0

96.

Given a set of points, estimate the volume
under the curve using Simpson’s rule on

[a.b]:

b-a
Az?[yo+4yl+2y2+4y3+2y4+...+4yn_1+ Yo

97.

Find the dot product: <u1, u2> . <vl,v2>

(U, U,)- (Vv ) = Uy, + UV,

98.

Multiply two vectors:

You get a scalar.
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2.1 Rates of Change and Limits

Objectives: +Calculate average and instantaneous speeds

*Define and calculate limits for function values
and apply the properties of limits

*Use the Sandwich Theorem to find certain
limits indirectly.

Suppose you drive 200 miles, and it takes you 4 hours.

distance AX
average speed = —— = —
elapsed time At

If you look at your speedometer during this trip, it might
read 65 mph. This is your instantaneous speed.

Arrock falls from a high cliff.
The position of the rock is given by: Yy = 16t*

After 2 seconds:

average speed:

What is the instantaneous speed at 2 seconds?
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_Ay

6(2+h)’ ~16(2)°

instantancous

s

for some very small
changeint

At

h
/

where h = some very
small change in t

We can use the TI-Nspire to evaluate this expression for
smaller and smaller values of h.

2 2
Ay 16(2+h) -16(2)
instantaneous E = h
We can see that the velocity h
approaches 64 ft/sec as h becomes

very small.

1

We say that the velocity has a limiting
value of 64 as h approaches zero.

(Note that h never actually becomes
zero.)

0.1
.01
.001
.0001

Ay

At

80
65.6
64.16

64.016
64.0016

.00001 64.0002

The limit as h

1
approaches zero: h->0

h

16(2+h)" - 64
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. sin X
Consider: Y =

What happens as x approaches zero?

(& | # [Somvui >

Looks I|

N
Limit notation:  lim f (X) =L
X—>C
“The limit of f of X as X approaches Cis L.”
. sinX
So: lim =1
x—=0 X
N

The limit of a function refers to the value that the
function approaches, not the actual value (if any).

%ﬁ 1 1(9)=
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Properties of Limits:

Limits can be added, subtracted, multiplied, multiplied
by a constant, divided, and raised to a power.

(See page 58 for details.)

For a limit to exist, the function must approach the
same value from both sides.

One-sided limits approach from either the left or right side only.

N
2 .
1 >—</\
‘ "2 s 4
Atx=1: lim f (x) = <« left hand limit
X—1"
lim f (x)= —— right hand limit
f (1) = +~—— value of the function
N

Atx=2: - lim f ()= Atx=3: lim f (x)=
tim £ (x)= Jim (%)=

F(2)= t(3)=
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“Step functions” are sometimes used to describe real-life
situations.

Our book refers to one such function: y =int(x)

This is the Greatest Integer Function.

The TI-89 contains the command int(x), but it is
important that you understand the function rather
than just entering it in your calculator.

Greatest Integer Function:

y = greatest integer that is < x

The greatest integer function is

also called the floor function. 1 —
The notation for the floor function T

is: G e
y=1x] —
Some books use Y =[X] or y=[X]. — 7

We will not use these notations.

Least Integer Function:

y = least integer that is > x

X y T —
0 0 T
05| 1 —

1 1 — &

15 2 —s T

21 2 . +
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Least Integer Function:

y = least integer that is > x

The least integer function is also
called the ceiling function.
Don’t worry, there are
The notation for the ceiling not wall functions, front
function is: door functions, fireplace
y=[x] functions!

o
©

5
The Sandwich Theorem:
Ifg(x)< f(x)<h(x) forall X #c in some interval about ¢
and lxlgclg(x) =1X1_r£h(x) =L, then lxgxcl f(x)=L.
Show that: lirr(} x* sin [lj =0
X X
The maximum value of sineis 1, s0  x’sin| — | < x?
X
The minimum value of sine is -1, s0  X’sin| — |> —X?
So:  —x*<x’ sin(l) <x?
X —

lim—x* < lim X sin [lj <limx?

x—0 x—=0 X x>0

0<lim x* sin(lj <0

x—0 X

x—0

By the sandwich theorem:  lim x? sin [l) =0
X

XMin [_

iax [

YMin: | - o2

10 vmax: [0
YScale kouto

ok| | cancet
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2.2 Limits Involving Infinity
Objectives: «Find and verify end behavior models for various
functions

«Calculate limits as X — 100 and to identify
vertical and horizontal asymptotes.

As the denominator gets larger, the value of the fraction
gets smaller.

There is a horizontal asymptote if:

1imf(x):b or lim f(X)zb

X——0

Example 1:

lim——— =lim— =limX =1
X—>0 lX2+1\_x9w\/X72 _xl—l;l;; =

This number becomes insignificant as X — o0 .

.". There is a horizontal asymptote at 1.
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: i ) . sinX
Example 2: f (X) _ sin X Find:  lim
X X—0 X
]
-12 -10 -8 -6 -4 -2 _?i 2 4 6 8 10 12
2
—1<sinx<1
sofor x>0 : ;lssmxsl
X X X
B . .". by the sandwich
fim =% < 1im $0X < jim L theorem:
X—0 X X—0 X X—x0 X
sin X
; lim——=0
0<lim¥™X <o o x
X=X N
Example 3: :
Find:  lim X SinX
X—0 X
Infinite Limits:
1
f(x)=—
(%=1

As the denominator approaches
zero, the value of the fraction gets

vertical

asymptote
very large. at x=0.
If the denominator is positive then the lim ==
fraction is positive. x=0" X
) . . .1
If the denominator is negative then lim — = -0
x—=0" X

the fraction is negative.




Chapter 2

Example 4: 1
lim — = o0
x=0" X The denominator is positive
in both cases, so the limit is
.1 the same.
lim — =
x>0~ X
.1
lim— = o0
x=0 X
N
End Behavior Models:
End behavior models model the behavior of a function as
X approaches infinity or negative infinity.
Afunction g is:
) ) . o f(x)
a right end behavior model for f if and only if hmmzl
X—x X
. : A )
a left end behavior model for f if and only if lim BT =1
N

Example 7: f (x) =xX+e*
As X—> 0, e approaches zero. (The X term dominates.)

. g(Xx)=x becomes a right-end behavior model.

—X —X
EmXe . —fim1+&— =140 =1

X—>00 X X—>0 X

As X —> —o0, €% increases faster than x decreases,
therefore € is dominant.

. h(x)=e™ becomes a left-end behavior model.

Test of —X

Cxa . X Our model

model ™ lim =1lim —+1 =0+1 =1"" is correct.
x>0 @~ X—>—0
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Example 7: f (X) =Xx+e*

. g(X)=x becomes a right-end behavior model.

. h(x)=e™ becomes a left-end behavior model.

On your calculator, graph:

Y =X
y,=¢e"
y, =X+e”

Use: —10<x<10 FARIN TAD ALT FUREC

-1<y<9

Example 7:
2% +x* = x? +1
f (X): 2
3X°—=5x+7

Often you can just “think through” limits.

L. [lj
lim sin| —
X—0 X

10
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2.3 Continuity

Objectives: -<ldentify the intervals upon which a given
function is continuous and understand the
meaning of a continuous function.

*Remove discontinuities by extending or
modifying a function.

*Apply the Intermediate Value Theorem and the
properties of algebraic combinations and
composites of continuous functions.

Most of the techniques of calculus require that functions
be continuous. A function is continuous if you can draw it
in one motion without picking up your pencil.

A function is continuous at a point if the limit is the same
as the value of the function.

Removable Discontinuities:

Y O N

(You can fill the hole.)

Essential Discontinuities:

o Al
| L [\

jump infinite oscillating

11
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Removing a discontinuity:

X1 )(2 -1

Removing a discontinuity:

5
'
3
-5-4-3-2-]?12345
2
3
/\ -
5
3
X - 1
e Note: There is another
f(x)= 3 discontinuity at X=—1 that can
> x=1 not be removed.

Continuous functions can be added, subtracted, multiplied,
divided and multiplied by a constant, and the new function
remains continuous.

Also: Composites of continuous functions are continuous.

examples: y= sin(xz) y =|cosX|

12
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Intermediate Value Theorem

If a function is continuous between a and b, then it takes

on every value between f (a) and f (b) .

Because the function is
continuous, it must take on

every y value between f(a)
() and  (b).

Example 5: |s any real number exactly one less than its cube?
(Note that this doesn’t ask what the number is, only if it exists.)

2.4 Rates of Change and Tangents Lines

Objectives: .Apply directly the definition of slope of a curve in
order to calculate slopes.

*Find the equations of the tangent line and
normal line to a curve at a given point.

*Find the average rate of change of a function.

13



Chapter 2

A
The slope of a line is given by: m= =4 /Ay
AX x

The slope at (1,1) can be approximated by
the slope of the secant through (4,16).

Ay
AX

We could get a better approximation if we
move the point closer to (1,1). ie: (3,9)

Ay
! AX
01234
s Even better would be the point (2,4).
f(x)=x Ay
AX

A
The slope of a line is given by: m= 2y /Ay
AX =

If we got really close to (1,1), say (1.1,1.21),
the approximation would get better still

2y
AX

1 How far can we go?

01234
f(x)=x’
Ay
slope =
f(L+h) oy / Ax
slope at (1,1)
1
h
1 1+h

The slope of the curve Y = f () atthe point P(a, f (a))is:

i (L il )

h—0 h
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The slope of the curve Y = f (X) at the point P(a, f (a))is:

m=lim
h—0

f(a+h)-f(a)
h

f(a+h)-f(a)

- is called the difference quotient of f at a.

If you are asked to find the slope using the definition or using
the difference quotient, this is the technique you will use.

The slope of a curve at a point is the same as the slope of

the tangent line at that point.

In the previous example, the tangent line could be found

using y—y, =m(x-x) .

If you want the normal line, use the negative reciprocal of

the slope. (in this case, —% )

(The normal line is perpendicular.)

Example 4:
| m = lim M
Let f(x)=~ 0

ﬂ Find the slope at x=a.

15
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Example 4:
Let f(x)=1
- X

ﬂ Where is the slope —% ?

N
Review:
| e ﬂ These are
average slope: = Ax often
- mixed u
ope atapoint. m=lim ~2N=1(@) (" by p
- =lm ———
slope at a poin hs0 h Calculus
students!

. total distance
average velocity: V,, =——7———

total time ) So are these!

instantaneous velocity:  If f (t) is the position function:

o f(t+h)=f(1)
velocity = slope V= lhlir& —

16
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3.1 Derivative of a Function

Objectives: .Calculate slopes and derivatives using the
definition of the derivative.

Graph f from the graph of f’, graph f” from the
graph of f, and graph the derivative of a function
given numerically with data.

f(a+h)-f(a)

Lin(} is called the derivative of f atd.
f(a+h)-f(a
We write: f'(x):}‘il}g%

“The derivative of  with respect to X is ...”

See pg. 99 and 100 for alternate definitions of derivatives.

There are many ways to write the derivative of Y = f (X)

-

f '(X) “fprime x” or the derivative of f with respect
to x”
y' “y prime”
dy “dee why dee ecks” or “the derivative of y with
dx respect to x”
df “Jee off dee ecks” or the derivative of f with
dx respect to x”

d . -
— f(X) “dee dee ecks uv eff uv ecks” or “the derivative

of f of x”
(d dx of f of x)
See pg. 101 for uses of each notation
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4
3
21
1 y= f(X)
0 1 2 3 4 5 6 7 8 9
The derivative
is the slope of 22—
the original
function.
0 1 2 3 4 5 6 7 8
-1 o—_e
1oy=1
y=x"-3
~ (x+h) —3—(x2 —3)
1/2 3 y, — llm
h—0 h
F )/+2x1\+ h\—)/
y'=lim R
—
0
1.2 3 T
y'= }ggZx +){
y'=2x

A function is differentiable if it has a
derivative everywhere in its domain. It
must be continuous and smooth.
Functions on closed intervals must have
one-sided derivatives defined at the end
points.
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3.2 Differentiability

Objectives:*Find where a function is not
differentiable and distinguish between
corners, cusps, discontinuities, and
vertical tangents

*Approximate derivatives numerically
and graphically.

To be differentiable, a function must be continuous and
smooth.

Derivatives will fail to exist at:

f(x)=[x f(><):><§
corner cusp
— 0 b x<0
HORH (=1 1 xz0
vertical tangent discontinuity
5

There are two theorems on page 113:

If f has a derivative at X =a, then f is continuous at x =a.

Since a function must be continuous to have a derivative,
if it has a derivative then it is continuous.
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Intermediate Value Theorem for Derivatives

If a and b are any two points in an interval on which f is

differentiable, then f' takes on every value between f’(a)
and f'(b).

f'(b)=3

Between aand b, f' must take

1
on every value between 5 and 3.

t t

3.3 Rules for Differentiation

Objectives:.Use the rules of differentiation to
calculate derivatives, including second
and higher order derivatives

If the derivative of a function is its slope, then for a
constant function, the derivative must be zero.

example:  y=3
Se)-0 ,
dx

The derivative of a constant is zero.
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We saw that if y=x2, y'=2x .

This is part of a pattern.

d examples:
el Xn — nxn—l
dx( ) f(x)=x* y=x
I f'(x)=4x’ y'=8x’
power rule
constant multiple rule:
examples:
d du
—(cu)=c— d ., -
dx dx —cx" =cnx
d

—7x° =7-5x* =35x*
dx

constant multiple rule:

d du
&(cu)fc&

sum and difference rules:

d _du

dv

&(u+v) &+&

d du dv
7( —v) = =
dx dx dx

y=x*+12x

y =4x"+12

y=x'-2x>+2

ﬂ=4x3 —4x
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product rule:

_ du dv Notice that this is not just the
dx dx product of two derivatives.

This is sometimes memorized as: d (UV =duv+udv

{
%[(xz +3)(2x° +5x)]=(2x)(2,(3 L5 +(X2 +3)(6X2\+ ;)
d

&(2% +5%° +6% +15x)

d (26 +11x' +15%) 4x* +10X% +6x* +5%> +18x* +15

10x* +33x* +15 10x* +33x* +15
5
quotient rule:
du dv
dlu) VU (u) duv-udv
_[_): dx dx | or dL_J =
dx\v V2 v v
d 2x*+5x (6x2 + 5)(x2 +3)7[(2x3 +5x)(2x)}
. =
dx x*+3 (X2+3)2
6x* +23x" +15—(4x* —=10x’)
(x+ 3)2
XM +13%0 +15
(xz + 3)2 .
Higher Order Derivatives:
y' = j—i is the first derivative of y with respect to x.
,_dy’ ddy d’y isthesecond derivative.
Tdx dxdx  dx? (y double prime)
w_dy" . o .
y'= is the third derivative. We will learn
dx later what these
higher order
g d derivatives are
y@ = ™ y" is the fourth derivative.  used for.
X
T
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Find the horizontal tangents of: Y = x* —2x* +2

v _ 4x* —4x
dx

Horizontal tangents occur when slope = zero.

4%’ —4x=0 Plugging the x values into the
s original equation, we get:
X =x=0

y=2,y=1y=1
(The function is even, so we

only get two horizontal
tangents.)

x(xz—l):O
X(x+1)(x=1)=0

x=0,-1

s

, 1

y=x"-2x>+2

W _ 4x* —4x
dx

First derivative
(slope) is zero at:

x=0,-1, 1
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3.4 Velocity and Other Rates of Change

Objectives:«Use derivatives to analyze straight
line motion and solve other problems
involving rates of change.

Consider a graph of displacement (distance traveled) vs. time.

Average velocity can be
found by taking:
distance change in position _ As

(miles) change in time At

At y _As_ f(trat)-f(t)

“e At At

time (hours)

The speedometer in your car does not measure average
velocity, but instantaneous velocity.

_ (The velocity at one
V(t):ﬁz imw moment in time.)
dt  At>0 At
Example: Free Fall Equation Gravitational
Constants:
1 o
s=—gt =32 _ft
2 - sec’
s=Lap m
- =9.8
2 . sec’
s=161t’
cm
g =980
V= ds _ 32t sec’
dt
Speed is the absolute value of velocity.
N
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If distance is in:  feet

Acceleration is the derivative of velocity.

2
dv _d f example:  v=32t
dt dt a=32

. . feet
Velocity would be in:  ——
secC
ft ft
Acceleration would be in: gec =—
secC see
N
It is important to understand the relationship between a
position graph, velocity and acceleration:
acc neg acc neg
vel pos & vel neg &
decreasing decreasing acc zero
vel neg &
acc zero constant
vel pos &
. constant acc pos
distance I vel neg &
. increasing
velocity
acc pos Zer0
vel pos &
increasing T
acc zero,
velocity zero
time N

Instantaneous rate of change = f'(X) e

Rates of Change:
f(x+h)—f(x)
Average rate of change = -

f(x+h)-f(x)

=lim

These definitions are true for any function.

( x does not have to represent time. )
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Example 1:

For a circle:

2
A=rxr 1
Erwl ywar growih '. g

rainy season

dry seaso

scar irom forest fire

N
from Economics:
Marginal cost is the first derivative of the cost function, and
represents an approximation of the cost of producing one
more unit.

N

Example 13:
xamee Suppose it costs:  €(X) =X’ —6X* +15x

to produce x stoves.

If you are currently producing 10 stoves, the
11t stove will cost approximately:




Chapter 3

3

.5 A Couple of Jerks
Objectives:.Use the rules for differentiating the six

basic trig functions

A sudden change in acceleration is called a “jerk.”
When a ride in a car or a bus is jerky, it is not that the
accelerations involved are necessarily large but that the
changes in acceleration are abrupt. Jerk is what spills
your soft drink.

The derivative responsible for jerk is the third derivative
of position.

Jerk is the derivative of acceleration. If a body’s position
at time t is s(t), the body’s jerk at time tis
)= da d’s

dt dt’

Consider the function Yy =sin(6)

We could make a graph of the slope: i slope

- | -1
A

{ f f | f } 2
\_ 0] 1
Z1o

Now we connect the dots! 2
The resulting curve is a cosine curve. T -1

%sim(x)=cosx

11
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We can do the same thing for Y =cos(6) 0| slope

The resulting curve is a sine curve that has
been reflected about the x-axis. 7! 0

%cos(x):—sinx

We can find the derivative of tangent X by using the
quotient rule.

2 a2
Cos™ X+sImn” X

d
—tan X 3
dx cos” X
d sinXx 1
dx cos x cos?® X
oS X+ €08 X —sin X-(—sin X) )
- sec’ X
cos’ X

%tan(x) =sec” X

Derivatives of the remaining trig functions can be
determined the same way.

d . d )
—sin X =cos X —CotX=—csc™ X
dx dx

d . d

—C0s X = —sin X —sec X =sec X-tan X
d 2 d

—tan X =sec” X d—cscX:—cscx~cotX

X

12
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3.6 Chain Rule

Objectives:«Differentiate composite functions
using the Chain Rule

*Find Slopes of parametrized curves

Consider a simple composite function:

y=6x-10 y=6x-10 y=2u u=3x-5
y=2(3x-5)

dy dy _ du_
Ifu=3x-5 dx=6\ du/z/ij
theny =2u

6=2-3

dy _dy du
dx du dx

one more:

y=0x2+6x+1 y=9x+6x+1 y=u’ u=3x+l1

y=(3x+1)’
d d
Ifu=3x+1 dfy:18><+6 Yo s
X du dx
then y = u? dy
—=2(3x+1
= 2(3x+1)
ﬂ=6x+2
du
18x+6=(6x+2)-3
This pattern is called
the chain rule. T ﬂzﬂdj
dx du dx

13
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&y _dy

Chain Rule: - du dx

If fog isthe composite of y = f (u)and U= g(x) ,
then:

(f Og) = fa:u:g(x)'gz:tx
example: f(X):SinX g(X)=X274 Find: (fog)' at x=2

f'(x)=cosx g'(x)=2x g(2)=4-4=0

f'(0)-9'(2)
cos(0)-(2-2)
1.4 =4

We could also do it this way:

f(g(x)):sin(x2—4)

Here is a faster way to find the derivative:

y:sin(x2 —4)

14
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Another example:

%cos2 (3x)

Derivative formulas include the chain rule!

d |, o du d . du
= e —sinu =cosu—
dx dx dx dx

d , du
—tanu =sec” U—
dx dx

etcetera...

The formulas on the memorization sheet are written with y’

instead of Y. Don’ t forget to include they’ term!
dx

{

The most common mistake on the chapter 3 test is to
forget to use the chain rule.

Every derivative problem could be thought of as a
chain-rule problem:

x? =2xix =2x-1=2x

dx \
/
The derivative of x is one.

derivative of
outside function

derivative of

gl

inside function
N

15
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The chain rule enables us to find the slope of
parametrically defined curves:

dy _dy dx
dt  dx dt The slope of a parametrized
curve is given by:
L d
T o
dx  dx ay _ %
dt dX l
dt
Example: X=3cost y =2sint

MAIN RAD AUT FAFR

3.7 Implicit Differentiation
Objectives:«Find derivatives using implicit
differentiation

16
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This is not a function,
but it would still be
nice to be able to find

2 2
X +y =1
y the slope.

d 2 d 2 d . .
—X"4+— Yy~ =—1 «— Do the same thing to both sides.

dx dx dx

N
2y =x*+siny This can’ t be solved fory.

This technique is called
implicit differentiation.

@ Differentiate both sides w.r.t. x.

@ Solve for d—y .
dx

Find the equations of the lines tangent and normal to the
curve x*—xy+y>=7 at (-1,2).
We need the slope. Since we can’ t solve for y, we use

implicit differentiation to solve for ﬂ .
X

17
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Find the equations of the lines tangent and normal to the

curve x*—xy+y>=7 at (-1,2).

4
m= 3 tangent: normal:

Higher Order Derivatives

2

dle if 2x’-3y*=7 .

Find

3.8 Derivatives of Inverse Trig Functions

Objectives:.Calculate derivatives of functions
involving the inverse trig functions

18
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f(x)=x* x=0
dt _
dx
At X =2:
f (2) =2"=4
df
—(2)=2-2=4
)
We can find the inverse
function as follows:

2X

m=4

y=x

0/ 2 4 6 8

x

df !
dx

1

df |
dx

x=f(a)

x=a

Derivative Formula for Inverses:

The derivative of f '(x)
evaluated at f(a)

is equal to the reciprocal of
the derivative of f(x)
evaluated at a .

y=x* f (x) =Jx _To find the dgrivative of the
inverse function:
x=y> 1
f"()():)(2 df’l= 1
Y=y g 1 7 o 20
y=x dx__2 * _
f(x)=x" x20 YT y=x Slopes are
af =2x 1 reciprocals.
dx ¢ /
Atx=2 24 m=4
f(2)=2"=4
of ) d =
—(2)=2-2=4 | (4,2) m=—
dx 0
0 / 2 4 6 8
£ (x) =/x AtX = 4:
a1 f(4)=v4=2
dx 24 df"(4): LU N |
dx 244 2 4
YT y=x Slopes are
reciprocals.
67 /
4 (2’4),‘; m=4 /
Because x and y are /
reversed to find the N . =\
reciprocal function, the (21,2) m
following pattern always 0 ‘ f‘
holds: of 2 & s s
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Find:

Given:

A typical problem using this formula might look like this:

df

f(3)=5 a(3)=6

df !
W(S)

Derivative Formula for Inverses:

o !
dx

S

df |
dx

x=f(a)

x=a

We can use implicit isin" X L5 Y =sin X
differentiation to find:  dx /

y=sin"' x

We could use the same technique to find itan" x and
d - X
—sec'x - i T o
dx csc X=——sec X
2
sin'u= 1 i icos" u L
d J1-u? dx dx Ji-g? dx
= du " 1 du
—ta = T ——Co - T
X 1+u® dx 1+u” dx
sec'u S icsc’1 u )
d ‘U‘«,szl dx dx ‘u‘duzfl dx
N

20
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Your calculator contains all six inverse trig functions.
However it is occasionally still useful to know the following:

o a1
sec’ X=cos | —
X

cot™ x :gftan’1 X

- .1
csc X=sin~ | —
X

Using the Formulas oL du

Using the Formulas L 1 du

U= ——— ——
dx ‘u‘«[uz_l dx

d _
15 1(5X4)

21
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3.9 Derivatives of Exponential and Logarithmic Functions

Objectives: «Calculate derivatives of exponential
and logarithmic functions

Look at the graph of Y = e*

3

2| If we assume this to

The slope at x=0 be true, then:

appears to be 1.
. e0+h _ eO
lim————=1
h—0 h

definition of derivative

N
Now we attempt to find a general formula for the
derivative of y =€ using the definition.

x+h X
9 () =tim <=
dx h—0 h
N

22
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X .. -
@" isits own derivative!

If we incorporate the chain rule:

d , ,du
e' =e" —
dx dx

We can now use this formula to find the derivative of a*

(@)

d

7(e1ﬂax) ( €" and InX are inverse functions.)

dx
d XIna
(&™)

xlna i
dx

e (x In a) (chain rule)

4 (@) ——— ¢ Ina

dx
d [ a*-lna
&)
Incorporating the chain rule:

d xlna
—1€
dx( ) d/_u\_ vy du

. &(a )=a na
eXl"a-—(Xlna)
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So far today we have:

d 0 0 du d (au) du

— =a'"lna—
dx dx dx dx

Now it is relatively easy to find the derivative of In x.

o = x dx e’
d d d
—(&")=— —Inx=—
dx( ) dx() Xn X

d

Tl d, L ldu

dx u dx

d d Inx 1 d 11
—logx =——— =———InXx =———
dx dx In10 In10 dx In10 x

The formula for the derivative of a log of any base
other than € is:

24
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ieuze“di d(au):aulnadi
dx dx dx dx
d 1 du d 1 du
—Inu=—— —log, u= =
dx u dx dx ulna dx




Chapter 4

4.1 Extreme Value Functions

Objectives: <Determine the local and global
extreme values of a function

The textbook gives the following example at the start

of chapter 4:

The mileage of a certain car can be approximated by:
m(v)=0.00015v> —0.032v* +1.8v+1.7

At what speed should you drive the car to obtain
the best gas mileage?

Of course, this problem isn’t entirely realistic, since it is
unlikely that you would have an equation like this for
your car.

m(v)=0.00015v" —0.032v* +1.8v+1.7

Notice that at
the top of the
curve, the
horizontal
tangent has a
slope of zero.

HAIN RRD AUTOD FUNC

Traditionally, this fact has been used both as an aid to
graphing by hand and as a method to find maximum (and
minimum) values of functions.
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Even though the graphing calculator and the computer
have eliminated the need to routinely use calculus to
graph by hand and to find maximum and minimum values
of functions, we still study the methods to increase our
understanding of functions and the mathematics involved.

Absolute extreme values are either maximum or
minimum points on a curve.

They are sometimes called global extremes.

They are also sometimes called absolute extrema.
(Extrema is the plural of the Latin extremum.)

N
Extreme values can be in the interior or the end points of
a function.
No Absolute
Maximum
2
y=X
Absolute Minimum
D = (~u0,)
N

Absolute
Maximum

y=x
D =[0,2]

Absolute Minimum
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i
Absolute
’ Maximum
I
y = X2 k) q 0 i
No Minimum
D =(0,2]
No
Maximum

y=X
D=(0,2)

No Minimum

Extreme Value Theorem:

If f is continuous over a closed interval, then f has
a maximum and minimum value over that interval.

S

Maximum & Maximum &

ax ax Maximum at
rTrn;nu_m o rr;mm;um_ . interior point,
at interior points at endpoints minimum at

endpoint
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Local Extreme Values:

A local maximum is the maximum value within some
open interval.

A local minimum is the minimum value within some open
interval.

Absolute maximum
(also local maximum)

Local maximum
Local minimum

Local minimum

o Local extremes
Absolute minimum are also called

(also local minimum) relative extremes.

Absolute maximum
(also local maximum)

Local maximum

Local minimum

Notice that local extremes in the interior of the function
occur where f' is zeroor f' is undefined.
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Local Extreme Values:

If a function f has a local maximum value or a local
minimum value at an interior point C of its domain,
and if f' exists at C, then

f'(c)=0

Critical Point:

A point in the domain of a function f at which f'=0
or T’ does not exist is a critical point of f.

Note:
Maximum and minimum points in the interior of a function

always occur at critical points, but critical points are not
always maximum or minimum values.

EXAMPLE 3 FINDING ABSOLUTE EXTREMA

Find the absolute maximum and minimum values of
f(x)=x** ontheinterval [-2,3]

2/3
f (X) =X There are no values of x that will make
the first derivative equal to zero.
f'(x)==x?
( ) 3 The first derivative is undefined at x=0,
s0 (0,0) is a critical point.
, 2
f'(x)=
3%/; Because the function is defined over a
closed interval, we also must check the
endpoints.
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f(x)=x"  D=[-23]

At x=0 f (0) =0 To determine if this critical point is
actually a maximum or minimum, we
try points on either side, without
passing other critical points.

f(-1)=1  f(1)=1

Since 0<1, this must be at least a local minimum, and
possibly a global minimum.

Atx=-2 f(-2)=(-2)F ~1.5874

2

At x=3  f(3)=(3)s ~2.08008

Absolut
mi:icr)nlljjri: (0’0)

Absolute
f (—1):1 f(l):l maximum: (3’2'08)

Atx=-2 f (—2) = (—2)§ ~1.5874

2

At x=3  f(3)=(3)s ~2.08008

Fi-| Fi=| FZ FY FE=| Fh= |F7-5i
Too1s|2aam|Trace|ReArarh|{Math|Or aw|Fenj:-:

\ Absolute maximum (3,2.08)

N

MAIN KERD AUTO FUMLC

f(x)=x*"

Absolute minimum (0,0)
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® © © o

Finding Maximums and Minimums Analytically:

Find the derivative of the

function, and determine

where the derivative is zero or undefined. These

are the critical points.

Find the value of the function at each critical point.

Find values or slopes for

points between the

critical points to determine if the critical points are
maximums or minimums.

For closed intervals, check the end points as

well.

Critical points are not always extremes!

y=X

2

\f':O

(not an extreme)

1/3

y =X

_—

1 2

f’ is undefined.

(not an extreme)
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4.2 Mean Value Theorem

Objectives: <Apply the Mean Value Theorem to find
the intervals on which a function is
increasing or decreasing

Mean Value Theorem for Derivatives

If f(X) is a differentiable function over [a,b], then
at some point between a and b:

f(b)_f(a): f’(c)

b-a

The Mean Value Theorem says that at some point
in the closed interval, the actual slope equals the
average slope.

y Tangent parallel

to chord.

Slope of tangent:
f'(c) B
Slope of chord:
f(b)-f(a)
b-a

X
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The function is continuous on [0,2] and differentiable on
(0,2). Since f (0) = 0 and f (2) = 4, the Mean Value
Theorem guarantees a point c in the interval.

f(b)-f(a) f'(x)=2x

f’(C)= 2c=2
b-a f'(c)=2c ¢
Cc=
fo-f@Q-fO@ . 4=0
2-0 2.0

A function is increasing over an interval if the derivative
is always positive.

A function is decreasing over an interval if the derivative
is always negative.

Where is f (x) = x’ —4x increasing and where is it decreasing?

f1(x)=3x> -4 7 7
+ - +

0=3x"-4 : :
2 0 2

4 _JA 4
X=i\/; 3 3

f'(-2)=3(-2)" -4

Increasing: 8
=+
L . , 2
’ 31°(\V3° f(0)=3(0) -4
Decreasing: =—4

[_E] f’(2)=_3(2)2—4

=48
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These two functions have the
same slope at any value of X.

Functions with the same derivative
differ by a constant.

Example 6:

Find the function f (X) whose derivative is sin(X) and
whose graph passes through (0,2) .

d—cos(x):—sin(x) s (x)=—cos(x)+C
X
2=—cos(0)+C
. d .
so: &—cos(x):sm(x) r—_1+C
3=C

Notice that we had to have

initial values to determine
the value of C.

The process of finding the original function from the
derivative is so important that it has a name:

Antiderivative
Afunction F (x) is an antiderivative of a function f (x)

if F'(x)=f (x)forall Xin the domain of f. The process
of finding an antiderivative is antidifferentiation.

You will hear much more about antiderivatives in the future.

This section is just an introduction.
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Example 7b: Find the velocity and position equations
for a downward acceleration of 9.8 m/sec? and an
initial velocity of 1 m/sec downward.

a(t)=98 s(t)=28¢ +trc
v(t)=9.8t+C 2

s(t)=4.9t +t+C
1= 98(0) +C The initial position is zero at time zero.
1=C 0=4.9(0) +0+C

v(t)=9.8t+1 0=C
s(t)=4.9t° +t

4.3 Connecting f’ and f” with the Graph of f.

Objectives: *Use the First and Second Derivative
Tests to determine the local extreme
values of a function

*Determine the concavity of a function
and locate the points of inflection by
analyzing the 2" derivative

*Graph f using information about f'.

First derivative:
y' is positive wmmp Curve is rising.
y' is negative =mmp Curve is falling.

y' is zero =) Possible local maximum or
minimum.

Second derivative:
y" is positive =mmp Curve is concave up. N

y" is negative =mmp Curve is concave down. 7\

y" is zero =) Possible inflection point
(where concavity changes). /JH

11
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Example:
Graph  y=x-3x>+4 :(x+1)(x—2)2
N
Example: 3 2 2
Graph  y=x"-3x*+4=(x+1)(x-2)
We then look for inflection points by setting the second
derivative equal to zero.
N

Make a summary table:  _; 9 -12 rising, concave down

0 -6 local max
falling, inflection point

0 6 local min

EN S N
|
w
S

9 12 rising, concave up

12
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4.4 Modeling and Optimization

Objectives: *Solve application problems involving
finding minimum or maximum values of|
functions

A Classic Problem

You have 40 feet of fence to enclose a rectangular garden
along the side of a barn. What is the maximum area that
you can enclose?

A=x(40-2x
| ( )

A=40x—-2x>
A = 40— 4x

A=10(40-2-10)
40-2x 0=40-4x

A=10(20)
4x =40

Xx=10 A=200 ft*

To find the maximum (or minimum) value of a function:
@ Write it in terms of one variable.
@ Find the first derivative and set it equal to zero.

@ Check the end points if necessary.

13
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Example 5:  \What dimensions for a one liter cylindrical can will
use the least amount of material?

>
Motot o ) .
oil We can minimize the material by minimizing the area.
We need another A= 271> +2zrh
equation that v S
relates r and h: areaof lateral
ends area

4.5 Linearization and Newton’ s Method

Objectives: °Find linearizations
*Estimate the change in a function using

differentials

For any function f (X), the tangent is a close approximation
of the function for some small distance from the tangent

y

point.

We call the equation of the
tangent the linearization of
the function.
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Start with the point/slope equation:

y_yIZm(X_xl) X =a yI:f(a) m:f’(a)
y—f(a)="f'(a)(x-a)
y=f(a)+f'(a)(x-a)

linearization of f at a

L(x)=f(a)+ f'(a)(x-a)

f (x)~ L(x) is the standard linear approximation of f at a.

The linearization is the equation of the tangent line, and
you can use the old formulas if you like.
N

Example: Find the linearization of f(x) =14+ X
at X = () and use it to approximate /1.02 without a

C:::)Ia:tolr L(x)=f(a)+ f'(a)(x—a)
] = L(x—
f!(x):%(l_l_x)_f L(X) 1+X2 (X O)
1 =1+—
_ 2
21 e Le02)=1+2
f(0)=— 2
2 =1.01

Example: Find the linearization of f(x) =cos X
at x = %, and use it to approximate cos1.75

L(x)=f(a)+f'(a)(x—a)

f5)=0 LO0=0-1(x~%)
f'(x)=—sinXx .
f'(£)=—sin(%) 2
: 2L(1.75)=-1.75+%
= ~—.1792

15
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Use linearization's to approximate /123.

fe0=x L0 = 114 —=(x—121)
Let x=121 212
f121)=11 L(123)=11+_-(123-121)
1 1
f'(X)=—p4 LA123)=11+—
) 24x (123) 11
1 =11.09
f'a2)=—
(121) >

Important linearizations for X near zero:

sin X X
cos X 1
tan X X

Differentials:

When we first started to talk about derivatives, we said that

A d
A% becomes d% when the change in X and change in

Yy become very small.

dy can be considered a very small change in Y.

dX can be considered a very small change in X.

16
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Let y=f(x) be a differentiable function.
The differential dx is an independent variable.
The differential dy is: dy = f’(x)dx

Example: Consider a circle of radius 10. If the radius

increases by 0.1, approximately how much will the area
change?

A=rr? d_Azz;;r dr
X ax
dA=2zr dr

L very small change in I'

very small change in A
dA=2-7-10-(0.1)
dA=2rx

(approximate change in area)

dA=2r

Compare to actual change:
New area: 72'(10.1)2 =102.01x
Old area: 7[(10)2 =100.007
2.01lx

(approximate change in area)

Error .01z

= ~.0049751 ~0.5%
Actual Answer 2.017

Error _0Olx
Original Area 1007

~.0001 =0.01%

17
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4.6 Related Rates

Objectives: *Solve related rate problems

First, a review problem:

Consider a sphere of radius 10cm.

If the radius changes 0.1cm (a very small amount) how
much does the volume change?

\% :im‘
3
dV =4zr’dr
dV =4z(10cm)’-0.lcm
dV =40zcm’

The volume would change by approximately 40zcm’.

Now, suppose that the radius is changing at an
instantaneous rate of 0.1 cm/sec.

(Possible if the sphere is a soap bubble or a balloon.)

vt
3
dv L dr
Ay P
dt dt
d—v=47z(10cm)2-(041ﬂj
dt sec
3
d—V=407z om
dt sec

The sphere is growing at a rate of 40z cm’/sec.

Note: This is an exact answer, not an approximation like
we got with the differential problems.

18
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Water is draining from a cylindrical
tank at 3 liters/second. How fast is
the surface dropping?

3
av _ ,3L — 3000°™
dt sec sec
Find ﬁ
dt
V =zr’h
&  ,dh
@ 8
dt dt o’
3000——
3 dh
30005 = 72 9N =-—Sec
sec dt dt zr

Steps for Related Rates Problems:
1. Draw a picture (sketch).
2. Write down known information.
3. Write down what you are looking for.
4. Write an equation to relate the variables.
5. Differentiate both sides with respect to t.

6. Evaluate.

Hot Air Balloon Problem:

Given: @ :E dj = 0,14ﬂ
4 dt min
How fast is the balloon rising?
Find dn
dt

secz = \/5
h 4
tand =——
500
180 _ 1 dn
dt 500 dt

2
[sec%) (0.14) I_dn

500 dt

seC

19
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Truck Problem:
Truck A travels east at 40 mi/hr.
Truck B travels north at 30 mi/hr.

How fast is the distance between the
trucks changing 6 minutes later?

X2+y2:ZZ

ax dy az
K—+2y— =27 —
b

4-40+3-30=5%
dt

250:5g az
50=—
dt

20
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5.1 Estimating with Finite Sums

Objectives: «Approximate the area under the graph
of a nonnegative continuous function
by using rectangle approximation
methods

eInterpret the area under a graph as a
net accumulation of a rate of change

Consider an object moving at a constant rate of 3 ft/sec.
Since rate - time = distance: 3t=d

If we draw a graph of the velocity, the distance that the
object travels is equal to the area under the line.

After 4 seconds,
the object has

) gone 12 feet.
velocity

3i-4 sec=12 ft
sec

time

3
If the velocity is not constant,
we might guess that the
distance traveled is still equal *
to the area under the curve.

(The units work out.) !

1
Example: V =—t>+1 . : >
8 1
1 1—
8
We could estimate the area under the curve by

drawing rectangles touching at their left corners.

This is called the Left-hand Rectangular
Approximation Method (LRAM).

Approximate area: 1+11+11+21:53:5.75
8§ 2 8 4
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v-ley
8

We could also use a Right-hand Rectangular Approximation
Method (RRAM).

Approximate area: 11+11+21+3=7§=7_75
8§ 2 '8 4

v-ley
8

0.5 [1.03125 2

1.5 |1.28125

2.5 | 1.78125

3.5 1253125

0 1 2 3 4
1.03125 128125 1.78125 253125
Another approach would be to use rectangles that touch at
the midpoint. This is the Midpoint Rectangular
Approximation Method (MRAM).

In this example there are four

. X subintervals.
Appro>6(|r;1;5te area: As the number of subintervals
. increases, so does the accuracy. N

V= ltz +1
With 8 subintervals: 8

t v

0.25/1.00781

0.75|1.07031

1.25]1.19531
1.75| 1.38281
2.25|1.63281
2.75(1.94531
3.25]2.32031
3.75|2.75781

1331248 x 0.5 =6.65624 | The exact answer for this
problem is 6.6.

width of subinterval N

Approximate area:
6.65624
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Inscribed rectangles are > i
all below the curve:

Circumscribed rectangles =
are all above the curve:

We will be learning how to find the exact area under a
curve if we have the equation for the curve. Rectangular
approximation methods are still useful for finding the
area under a curve if we do not have the equation.

The TI-89 calculator can do these rectangular
approximation problems. This is of limited usefulness,
since we will learn better methods of finding the area
under a curve, but you could use the calculator to check
your work.

5.2 The Definite Integral

Objectives: *Express the area under a curve as a
definite integral and as a limit of
Riemann sums.
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volea When we find the area

8 under a curve by adding
rectangles, the answer is
called a Rieman sum.

The width of a rectangle is
called a subinterval.

0 1 2 3 4

Y The entire interval is
subinterval called the partition.
~ /
partition

Subintervals do not all have to be the same size.

N
If the partition is denoted by P, then
the length of the longest subinterval
is called the norm of P and is
denoted by HPH .

bint |
_\SU 1 /—’erva As HPH gets smaller, the
partition approximation for the area gets
better.
Area = lim Z f Ck AX if P is a partition
\PH—» of the interval [a, b
N

[im Z f Cy )Axk is called the definite integral of
HPH%O f over [a b]

If we use subintervals of equal length, then the length of a

b-a
n

subinterval is: Ay =

The definite integral is then given by:

ilm z f(c)A
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for the definite integral:

n—o

limzn: f (Ck )AX Leibnitz introduced a simpler notation
k=1

limgf(ck)Ax=f:f(x)dx

nN—o

Note that the very small change
in X becomes dXx.

upper limit of integration

Integration

Symbol \J; f (x)dx

—
integrand
variable of integration

lower limit of integration (dummy variable)

Itis called a dummy variable
because the answer does not
depend on the variable chosen.ﬂ

Definition Area Under a Curve (as a Definite Integral)

If y =f (x) is a nonnegative and integrable over a closed
interval [a, b], then the area under the curve y =f (x) from
ato b is the integral of f from a to b,

Lb f (x)dx

We have the notation for integration, but we still need
to learn how to evaluate the integral.
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In section 5.1, we considered an object moving at a
constant rate of 3 ft/sec.
Since rate - time = distance: 3t = d

If we draw a graph of the velocity, the distance that the
object travels is equal to the area under the line.

After 4 seconds,
the object has
gone 12 feet.

velocit
3i-4 sec=12 ft
sec

time

4
This is also the same as saying I3dx =12
0

The Integral of a Constant
If f (X) = c, where c is a constant, on the interval [a, b],

ic dx=c(b-a)

then

2
Evaluate the integral I Va—x*dx =27
o)

To evaluate this integral, we can graph the function
and then find the area under the curve

The curve is a semi-circle
with a radius of 2.

Azlﬂﬂ
2

1
A=—7(2)
2()

A=2rx

4-x
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Other Important Information

When f (x) < 0, the function is below the x —axis, therefore
the area is negative.

The area of a trapezoid is A = %(b1 +b,)h

5.3 Definite Integrals and Antiderivatives
Objectives: *Apply rules for definite integrals.

*Find the average value of a function
over a closed interval.

Area = lim Zn: f(c,)Ax,
[PI-0 4

=I:f(x)dx

~F(0)-F ()

F(x) is the antiderivative of f(x)




Chapter 5

Example: _

y

4

X

2

Find the area under the curve from
x=1 to x=2.

2

I x*dx Loy 1,
I 3 3
1, / 8 7
—X o =
37, 33 3

Area under the curve from X=1 to X=2.

N
b a . P
1. f ——[*f Reversing the limits
J.a (x)dx -[b (x)dx changes the sign.
2. J"“‘ f (x)dx -0 If the upper and lower limits are equal,
a then the integral is zero.
3. _[bk- f(x)dx= kjb f(x)dx Constant multiples can be
2 2 moved outside.

4. _[:[f(x)+g(x)]dx=_[:f(x)dx+_[:g(x)dx
Integrals can be added and
subtracted.

4. f:[f(x)+g(x)]dx=j:f(x)dx+.[:g(x)dx

Integrals can be added and
subtracted.

5. Lb f (x)dx+I:f(x)dx=I:f(x)dx

y=f(X)

Intervals can be added
(or subtracted.)




Chapter 5

The average value of a function is the value that would
give the same area if the function was a constant:

i A:J'Slxzdx
02
4
1L 27 9
3 =—x}| =2 == =45
6 |, 6
2
1.5
! Average Value:%:I.S
0 1 2 3
Area 1 b
1, Average Value = =——| f(x)dx
y=2X g Width b-a-s (%)
N

The mean value theorem for definite integrals says that
for a continuous function, at some point on the interval the
actual value will equal the average value.

Mean Value Theorem (for definite integrals)

If f is continuous on[a,b] then at some point c in [a,b],

f(c):ﬁ " £ (x) dx

5.4 Fundamental Theorem of Calculus

Objectives: *Apply the Fundamental Theorem of
Calculus

*Understand the relationship between
the derivative and the definite integral
as expressed in both parts of the FTC
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The Fundamental Theorem of Calculus, Part 1

If f is continuous on [a,b] , then the function

F(x) :j: f(t)dt

has a derivative at every point in [a»b] ,and

dF  d
oS M (t)dt=f
v AUV (%)

N
First Fundamental Theorem:
d ex
— | f(t)dt="f(x)
dx 72
1. Derivative of an integral.
2. Derivative matches upper limit of integration.
3. Lower limit of integration is a constant.
N

First Fundamental Theorem:

ijx cost dt =cosX 1. Derivative of an integral.
-7

2. Derivative matches
upper limit of integration.

r(sintx ) o '

dx 7 3. Lower limit of integration
0 is a constant.

d,. . N

—(smx sinf<r))

dx Y

d .

—s1n X

dx

cos X

10
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4
dx 4o 1+t

1. Derivative of an integral.

_ 1
1+x*

2. Derivative matches
upper limit of integration.

3. Lower limit of integration
is a constant.

The upper limit of integration does
not match the derivative, but we
could use the chain rule.

ijsstsint dt

dX X—

—ijx3tsmt dt
dx s

—3Xsin X

The lower limit of integration is not
a constant, but the upper limit is.

We can change the sign of the
integral and reverse the limits.

11
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Neither limit of integration is a
d ¢ 1
dt constant.

dx 72z 2 + €'

We split the integral into two parts.

R dtj
0 2+e 2x24+e

dU* Lo dt]
dx\’0 2+e 0 2+e

Lo Lo, 2

24e* 2+4e™ T 24e” 2+e

2x

The Fundamental Theorem of Calculus, Part 2
If f is continuous at every point of [a,b], and if

F is any antiderivative of f on [a,b] , then

(Also called the Integral Evaluation Theorem)

We already know this!

To evaluate an integral, take the anti-derivatives and subtract.

T

5.5 Trapezoidal Rule

Objectives: *Approximate the definite integral by
using the Trapezoid Rule and by using
Simpson’s Rule, and estimate the error
in using the Trap and Simpson’s Rule.

12
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y:éxﬁ-l 0<x<4

Actual area under curve:

A=I41x2+1 dx
08

4

A=l ix
24

0

3

y:éx2+1 0<x<4

Left-hand rectangular
approximation:

Approximate area:

1e1te1liol 53 5795
8 2 8 4

(too low)

y:lx2+1 0<x<4

Right-hand rectangular
approximation:

Approximate area: 1l+1l+21+3:73:7.75
8 2 8 4

(too high)

13
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Averaging the two:

1754575 _ 6.75 1.25%error  (too high)

1 9) 1(9 3\ 1(3 17) 1(17
T=—|l+=|+=| =+ [+ =+— |+=| —+3
2 8) 28 2) 2(2 8) 2\8
1 3 317 17
— —t+—+—+—+3

2 2 2 8 8

8
T 11(27) :277 —6.75 (still too high)
2 >

Trapezoidal Rule:
h
T :5(3’0 +2Y, +2Y, +. 2y, +Y,)

( h = width of subinterval )

This gives us a better approximation than either left
or right rectangles.

14
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y:éxﬁ-l 0<x<4

Compare this with the
Midpoint Rule:

0 1 2 3 4

1.03125 1.78125
1.28125 2.53125

Approximate area: 6.625  0.625% error (too low)

The midpoint rule gives a closer approximation than the
trapezoidal rule, but in the opposite direction.

Trapezoidal Rule:  6.750 1.25% error (too high)

Midpoint Rule: 6.625 0.625% error  (too low)

Notice that the trapezoidal rule gives us an answer that
has twice as much error as the midpoint rule, but in the
opposite direction.

If we use a weighted average: @

2(6.625)+6.750  — _ Thisisthe

3 . exact answer!

Ooohl -

This weighted approximation gives us a closer approximation
than the midpoint or trapezoidal rules.

Midpoint:

M =2h-y, +2h-y, =2h(y, +Y;)

Trapezoidal:

////‘§§ T =%(Vo+yz)2h+%(yz+y4)2h

h X h X, h X, h X, T:h(yn+yz)+h(Yz+y4)
2M3+T T:h(y1\+ZYz+y4)
1 h
:§[4h(y1 +y3)+h(yo+2yz+y4):| :§[4y1 +4Y,+Y, +2Y, +}/4]
\ S

twice midpoint trapezoidal h
= E(YU +4y1 +2yz +4y3 + }’4)

N

15
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Simpson’s Rule:

h
S =3 (Yot 4% +2Y, +4Y; +..42Y, , +4Y0 i +Yy)

( h = width of subinterval, N must be even )

Example: =1,
y=gx+l s=Y144.20034 3
3 s 28

=1 1+2+3+£+3
3 2 2

1 _
=-(20) =
3( ) =66

16
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6.1 Slope Fields and Euler’s Method

Objectives: *Solve initial value problems
*Construct slope fields using
technology and interpret slope fields as
visualizations of differential equations.

First, a little review:
Consider: Y=X"+3 y=x"-5
then: Yy’ =2x y'=2x

It doesn’ t matter whether the constant was 3 or -5, since
when we take the derivative the constant disappears.

However, when we try to reverse the operation:

Given: y'=2x find y We don’tknow what the
constant is, so we put “C” in
y= x> +C the answer to remind us that
there might have been a
constant.

If we have some more information we can find C.

Given: y'=2x and y =4 when x =1, find the equation for y .

y=x"+C

) This is called an initial value
4=1"+C problem. We need the initial
3-C values to find the constant.
y=x"+3

An equation containing a derivative is called a differential
equation. It becomes an initial value problem when you

are given the initial condition and asked to find the original
equation.
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Initial value problems and differential equations can be
illustrated with a slope field.

Slope fields are mostly used as a learning tool and are
mostly done on a computer or graphing calculator, but a
recent AP test asked students to draw a simple one by hand.

\\77 / y'=2x
\\ // Xyly'
\\77/// 59 |6
VAN Ak
VN aF
B (-
Ly R

6.2 Antidifferentiation by Substitution

Objectives: *Compute indefinite integrals by the
method of substitution
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Example 1:

Don’ t forget to substitute the

6
(X + 2) value for U back into the problem!
+C
6
Example:
(Exploration 1 in the book) One of the clues that we look for is

[ > if we can find a function and its
,[ 147 - 2x dx derivative in the integrand.

/ / The derivative of 1+ X* is 2X dX .
1

J‘uE du Letu=1+Xx’
5 3 du =2x dx
—u?+C
3
Note that this only worked because
5 3 of the 2X in the original.
f(l +x2 )5 +C Many integrals can not be done by
substitution.
Example 2:
'[w/4x_1dx Letu=4x-1
du =4 dx
21
J- uz -—du 1 Solve for dx.
4 —du =dx
2 21 !
Zu?-—+C
3 4
3
—u?+C
1 3
5 (4x-1)2+C
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J.sin4 X-cos X dx
j(sin X)4 cos X dx
Iu“ du
1

—u’+C
5

lsin5 x+C
5

Example 3:
J'cos(7x+5) dx Letu=7x+5
du =7 dx
1
Icosu -—du 1
7 —du =dx
7
1 sinu+C
7
%sin(7x+5)+C
Example: (Not in book)
J.Xzsin(x3) dx Letu=x’
| du =3x? dx
fJ.sinu du 1
3 —du=x* dx
3 \—(_1
—lcosu +C We solve for X* dX .
3 because we can find it
in the integrand.
—lcos x*+C
3
Example 7:

Let u=sinXx

du = cos x dx
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Example:

L4

J.OX tan X sec’ X dx
/ new limit

J.Olu du

N new limit

1.
2

0

1
2

The technique is a little different
for definite integrals.

Letu=tanXx

du =sec? x dx

u(0)=tan0=0

T T
ul— |=tan—=1
4 4

We could have substituted back and
used the original limits.

N
Example:
. Using the original limits:
J.f tan X sec” X dx
Let u=tanXx
M du =sec? x dx
Leave the
.[U du} limits out until e 2 5
ou substitute __
you substiy —(tan4j —-—(tan0)
1
= — u2
2 This is
T 1 1 usually
2[4 —.1>’~-=.0> =— more work
= 7(tan X) 2 2 2 than finding
0 new limits
_ 4
Example:

£13x2\/x3 +1 dx

2l
'fuzdu
0

2

w | N

0

3
3.25 :2-2\/5
3 3

Letu=x +1 u(-1)=0

du =3x* dx u(1)=2

3
u? Don’ t forget to use the new limits.

N

3
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6.3 Integration by Parts

Objectives: *Use integration by parts to evaluate
indefinite and definite integrals.
*Use tabular integration or the method
of solving for the unknown integral in
order to evaluate integrals

6.3 Integration By Parts

Start with the product rule

: Iu dv:_[(d (uv)-v du)
—(uv):uﬁ+vd—u

4 gL gk
d(uv)=udv+vdu

ju dv = I(d (uv))—_fv du

ju dv=uv—_fv du

d(uv)-vdu=udv

This is the Integration by Parts
u dVZd(UV)—V du formula. ’ g

Iu dv=uv—J'vdu

dv is easy to
u differentiates to  jntegrate.

zero (usually).

The Integration by Parts formula is a “product rule” for
integration.

Choose U in this order: LIPET

Logs, Inverse trig, Polynomial, Exponential, Trig
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Example 1:
Iu dv :uv—jv du
.[X-cosx dx LIPET
Example:
Iu dv:uv—Iv du
J. Inx dx LIPET
Example 4:

Ixzex d Iu dv:uv—jv du LIPET




Chapter 6

Example 5: LIPET
_[ex cos X dx

A Shortcut: Tabular Integration
Tabular integration works for integrals of the form:
I f(x)g(x)dx
\/_y_/\_v_‘)\

where:  Differentiates to  Integrates
zero in several repeatedly.
steps.
.fxzex dx

f () & deriv. | g(x) & integrals
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jx3 sin X dx

6.4 Exponential Growth and Decay

Objectives: *Solve problems involving exponential
growth and decay in variety of
applications

The number of rabbits in a population increases at a rate
that is proportional to the number of rabbits present (at
least for awhile.)

So does any population of living creatures. Other things
that increase or decrease at a rate proportional to the
amount present include radioactive material and money in
an interest-bearing account.

If the rate of change is proportional to the amount present,
the change can be modeled by:

dy
2k
a Y
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dy

Y_

a
Ly =k dt
y

Rate of change is proportional
to the amount present.

Divide both sides by y.

J.ldy = .[k dt Integrate both sides.
y

In ‘ y\ =kt+C
1 )
Jlf dy = J'k dt  Integrate both sides.
y
In ‘ y\ =kt+C
eln\y\ _ ekt+C Exponentiate both sides.
_ C .kt When multiplying like bases, add
‘y‘ =€ -¢ exponents. So added exponents
can be written as multiplication.
Inly| KEAC Exponentiate both sides.
e'"=e
C okt When multiplying like bases, add
M =€ -€ exponents. So added exponents
can be written as multiplication.
y — iecekt
kt
y = Ae Since +e° is a constant, let+e° = A .

10
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y = +elek

kt
y= Ae Since +e° is a constant, let+e€ = A

1
yOZAQ’Z'O Att=0.Y=Y,.

yozA

_ kt This is the solution to our original initial
y - yOe value problem.

Exponential Change: Y = yOekt

If the constant K is positive then the equation
represents growth. If K is negative then the equation
represents decay.

Note: This lecture will talk about exponential change
formulas and where they come from. The problems in
this section of the book mostly involve using those
formulas. There are good examples in the book, which |
will not repeat here.

Continuously Compounded Interest

If money is invested in a fixed-interest account where the
interest is added to the account k times per year, the
amount present after t years is:

A(t)= A)(Hﬁ)kt

If the money is added back more frequently, you will make
a little more money.

The best you can do is if the
interest is added continuously.
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Of course, the bank does not employ some clerk to

kt
. r
We could calculate: ~ lim Ay (1 +fj
k—o k

but we won’t learn how to find this limit until chapter 8.

(The TI-89 can do it now if you would like to try it.)

Since the interest is proportional to the amount present,
the equation becomes:

- You may also use:
Continuously Compounded

Interest: A=Pe"

A= Ag"

which is the same thing.

continuously calculate your interest with an adding machine.

Radioactive Decay 1R /"._:

The equation for the amount of
a radioactive element left after
time tis:

y=y,e™"

This allows the decay constant, k, ['I ___/' N ".|
to be positive. t

The half-life is the time required for half the material to decay.

Half-life ™~ )

1
5/0 =)

0
Jrﬂ—ln2=—kt

In2 = kt Half-life:
In2
half-life = ——
y :t a 11¢ k
k

12
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Newton’s Law of Cooling

Espresso left in a cup will cool to the temperature of the
surrounding air. The rate of cooling is proportional to the
difference in temperature between the liquid and the air.

(It is assumed that the air temperature is constant.)

d%:,k[T 7Ts]

If we solve the differential equation: q

we get:

Newton’s Law of Cooling
T-T,=[T,-T.Je"

where T, is the temperature
of the surrounding medium,
which is a constant.

b
6.5 Partial Fractions
Objectives: <Evaluate integrals using partial fractions
I 5x-3
x> —2x-3

13
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6X+7

(x+2)2

2%° —4x* —x-3
x> —2x-3

6x> —8x—4

@ Find the general solution to ﬂ

14
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6.5 Population Growth

Objectives: *Group Presentations
*Solve problems involving exponential or
logistic population grown.

We have used the exponential growth equation Y = yoek'
to represent population growth.

The exponential growth equation occurs when the rate of
growth is proportional to the amount present.

If we use P to represent the population, the differential
equation becomes:  gp

—=kP
dt
The constant K is called the relative growth rate.
dP/dt
=]

k

The population growth model becomes: P = Poek‘

However, real-life populations do not increase forever.
There is some limiting factor such as food, living space or
waste disposal.

There is a maximum population, or carrying capacity, M.

A more realistic model is the logistic growth model where
growth rate is proportional to both the amount present (P)

and the fraction of the carrying capacity that remains: M — P

M

15
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The equation then becomes:

dp = kP (M)
dt M

Our book writes it this way:

Logistics Differential Equation

P _Kpm-p)
d M

We can solve this differential equation to find the logistics
growth model.

Logistics Differential Equation
®_Kpm-p)
dad M

Logistics Growth Model

M
1+ Ae™

16
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Example:

Logistic Growth Model

Ten grizzly bears were introduced to a national park 10
years ago. There are 23 bears in the park at the present
time. The park can support a maximum of 100 bears.

Assuming a logistic growth model, when will the bear
population reach 50? 75?7 100?

100 100
- 0.1t
1+9e o
60
We can graph  gegars
this equation 40
and use
“trace” to find 20
the solutions. ;
0 20 40 Years 60 80 100

y=50 at 22 years

y=75 at 33 years

y=100 at 75 years

17
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Day 61/62
11/17/14

7.1 Integral as Net Change

Objectives: eSolve problems in which a rate is
integrated to find the net change over
time in a variety of applications

Assignment: pg. 386 # s 1-15 odd, 17-20, 31-36

A honey bee makes several trips from the hive to a flower
garden. The velocity graph is shown below.

What is the total distance traveled by the bee?
200+ 200+ 200+100 =700 700 feet

1007
f
min 50] 200ft 200ft
0 2 4 6 8 10
minutes
-50 200ft 100ft

What is the displacement of the bee?

200-200+ 200-100 =100
@ 100 feet towards the hive

wor———

min 50 200ft 200ft

0 2 4 6 8 10
minutes

-50 -200ft -100ft

-100 —_— —_—
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Displacement:

v 11 o
0| 1 2 13 4 5 2 2
2 2
Distance Traveled:
5 velocity graph
z 1+ 1 + 1 +2=4
2 2

Every AP exam | have seen
0 + 2 3 & s hashad at least one
problem requiring students
to interpret velocity and

2 position graph position graphs.

To find the displacement (position shift) from the velocity
function, we just integrate the function. The negative
areas below the x-axis subtract from the total
displacement.

) b

Displacement :I V(t)dt
a

To find distance traveled we have to use absolute value.

Distance Traveled = _[:|V (t)|dt

Find the roots of the velocity equation and integrate in
pieces, just like when we found the area between a curve
and the x-axis. (Take the absolute value of each integral.)

Or you can use your calculator to integrate the absolute
value of the velocity function. (However, on the AP exam,

they look for the roots of the velocity equation) N

8
(t+1)?
Find the displacement the object travels in thelst second

An object has the following velocity v(t) =t* —

1
8
_ |2 _
s(t)—!‘t Wdt
¢ gl

3,
=1+4—8=—E
3 3
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An object has the following velocity v(t) =t* — 8 5
(t+1)
Find the distance the object travels in 2 seconds.

First you have to find when the object stops, i.e. when the
velocity is zero.

_ -

(t+)°  t=1.2545..
Then we need to find out when the object is moving in the
positive direction and the negative direction

— 0 +
v(t) }
t=1.2545...

_t2 8 t==2

An object has the following velocity v(t) = t? - 8 3

(t+1)
Now integrate in different pieces using the bounds when
the object is stop. Do not forgot to take the absolute value
integral when the object is moving to the left.

1.2545 8 2 8
st)= | F ——dt+ [t ——dt
0 (t+1) o (t+1)

=4.9202

Example 5:  National Potato Consumption

The rate of potato consumption
for a particular country was:

C(t)=22+L1

where t is the number of years
since 1970 and C is in millions
of bushels per year.

The Russet Burbank

For a small At, the rate of consumption is constant.

The amount consumed during that short time is C(t)-At
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Example 5:  National Potato Consumption
C(t)=22+11
The amount consumed during that short time is C(t)-At .

We add up all these small
amounts to get the total
consumption:

total consumption = jC (t)dt

From the beginning of 1972 to
the end of 1973:

4

j42.2+1.1‘dt 2ot 1
2 In1.1

million

~1.066 bushels

2

Work:
work =force - distance
Calculating the work is easy
when the force and distance are

constant.

When the amount of force
varies, we get to use calculus!

Hooke’s law for springs: F = k

X = distance that
the spring is

extended beyond
its natural length

k = spring
constant
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Hooke’ s law for springs: F = kx

F=10N

Example 7:

It takes 10 Newtons to stretch a
spring 2 meters beyond its natural
length.

10=k-2
5=K == F=5-X
How much work is done stretching

the spring to 4 meters beyond its
natural length?

How much work is done stretching
the spring to 4 meters beyond its
natural length?

For a very small change in X, the
force is constant.

dw=F(x)dx  F(x)=5x

dw =5x dx 4
W==x
_[dw = I 5x dx / 2
4 W =40 newton-meters
W :.[ 5x dx
0 W =40 joules

Day 63/64
11/19/14

7.2 Areas in the Plane

Objectives: eUse integration to calculate areas of
regions in a plane

Assignment: pg. 395 #’s 2-42 even, 50-55
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Y, =2-X

Y, =—X

How can we find the area
between these two curves?

We could split the area into
several sections, use
subtraction and figure it out,
but there is an easier way.

Consider a very thin vertical
strip.

The length of the strip is:
Yi—Y, or (2— Xz)—(—X)

Since the width of the strip is

Y, =—X a very small change in X, we
could call it dx.
N
\A
™
=2-X
yl y1 - yz
ax — \
|| Y,
Since the strip is a long thin
y, = —X rectangle, the area of the strip is:
2
length - width = (2—x*+ x)dx

2
2
If we add all the strips, we get: LZ— X" +x dx
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Yo ==X 67§+27777

6 6

The formula for the area between curves is:

Area:j:[fl(x)— f,(x)]dx

We will use this so much, that you won’ t need to
“memorize” the formula!

y=+x
dX —k—
=x-2
dX —sfe—
y=x
% y=x-2
dy
y=vx y=x-2
y2=x y+2=x

If we try vertical strips, we
have to integrate in two parts:

J'OZ\/; dx+LA\/;—(x—2)dx

We can find the same area
using a horizontal strip.

Since the width of the strip
is dy, we find the length of
the strip by solving for X in
terms of y.
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y=x We can find the same area
using a horizontal strip.

f y=x-2 Since the width of the strip
dy is dy, we find the length of

the strip by solving for X in
y:\/; y=x-2 p by g

terms of y.
y =X  y+2=x

2

2 1 1
[(y+2)-y* dy 5y2+2y—§y3
N 0
length of strip 8 10

) ) 2+4—= ==—
width of strip 3 3

General Strategy for Area Between Curves:

Sketch the curves.

© ®

Decide on vertical or horizontal strips. (Pick
whichever is easier to write formulas for the length of
the strip, and/or whichever will let you integrate fewer
times.)

@ Write an expression for the area of the strip.
(If the width is dx, the length must be in terms of X.
If the width is dy, the length must be in terms of y.

@ Find the limits of integration. (If using dX, the limits
are x values; if using dy, the limits are y values.)
@ Integrate to find area.

Day 63/64
11/19/14

7.3 Volumes

Objectives: eUse integration to calculate volumes of
solids by cross sections
eUse integration to calculate surface areas
of solids of revolutions

Assignment: pg. 405 Quick Review #'s 1-10,
pg. 406 #'s 1-14, 15-41 odd, 63-68,
AP Review #'s 1-3




Lesson 7.1

Method of Slicing (p400):

@ Sketch the solid and a typical cross section.

(2) Find a formula for A(X).
@ Find the limits of integration.

@ Integrate A(X) to find volume, V/(X)

match the curve.

Suppose | start with this curve.

My boss at the ACME Rocket
Company has assigned me to
build a nose cone in this shape.

So | put a piece of wood in a
lathe and turn it to a shape to

y=~/x of the cone?

and add their volumes.
i

cylinder (disk) is:

A(x) dx

In this case:

in x = dx

How could we find the volume

p One way would be to cut it into a
series of thin slices (flat cylinders)

The volume of each flat

zr?- the thickness

r=the y value of the function

thickness = a small change
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The volume of each flat
cylinder (disk) is:

712 - the thickness

V3 (\/;)2 dx

If we add the volumes, we get:
J‘AH(\/;)Z dx
0

= I:nx dx

=8r

This application of the method of slicing is called the
disk method. The shape of the slice is a disk, so we
use the formula for the area of a circle to find the
volume of the disk.

If the shape is rotated about the x-axis, then the formula is:

v :n_[; y® dx

b
A shape rotated about the y-axis would be: V = 7Z'L x? dy

. 1
The region between the curve X:W , 1<y<4 and the

y-axis is revolved about the y-axis. Find the volume.

We use a horizontal disk.
The thickness is dy.

The radius is the x value of the
function =—=— .

&=~

2
4 1 4 1
0 1 V=L”[\/§] dy :.[1”§ dy

volume of disk

0
:;z'lny‘: :ﬂ(|n4—yﬁ.) =zIn2* =27In2

N
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The region bounded by
y=x%and Y =2Xis
revolved about the y-axis.
Find the volume.

\// If we use a horizontal slice:
2 —
y=x'  y=2x The “disk” now has a hole in
Jy =x Y_y it, making it a “washer”.
2

The volume of the washer is: ~ (zR?—zr?)-thickness
2
V=J.:”[(\/§)z’[%] ]dy ﬂ(szrz)dy
LN
outer inner
v =.[:”[y7% yZde radius  radius

e 1, 1, 1. _ 16] 8z
szz'J.Oy—Zy dy =;z|:5y 7Ey X =7 87; =3

This application of the method of slicing is called the
washer method. The shape of the slice is a circle
with a hole in it, so we subtract the area of the inner
circle from the area of the outer circle.

b
The washer method formulais:  V = ﬂ.[ R? —r? dx
a

y=x"|f the same region is
rotated about the line X=2:

The outer radius is:
R=2-Y
The inner radius is:
y r=2-\y
y
2

2
=nj:xf—2y+y7—l+4\/§—y dy

4 1, %
=7r_|'0—3y+zy +4y? dy

.
3, 1 4,832

|3y Lyl 8

”{zy 2’73

=7r-[—24+E+%} s

4 y2
——/Zj0 (472)/+7]7(4—4 Y+y)dy
3 3 3 -

11
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5
) ”.[154—(y—1)dy+4;r
"5y dy+4
) y=x2+1 ”L Cydyram
p 1,T
7{5),7,),2} +4r
0 12 2 1
=3
y-l=x  x=4y-1 2 2
5., 2 2 §_§
”LT —(Jy—l) dy+7-2°-1 ”[2 2 +4r
lind
e | e I
radius 2
thickness
of slice 87 +4r =127

Here is another
y=x2+1 way we coul_d
approach this
problem:

cross section

If we take a vertical slice and revolve it about the y-axis
we get a cylinder.

If we add all of the cylinders together, we can reconstruct
the original object.

cross section

The volume of a thin, hollow cylinder is given by:

Lateral surface area of cylinder - thickness

= circumference - height - thickness

=2z -h-thickness

=27x(xX* +1) dx

Fh ]

circumference thickness

12
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This is called the
shell method

because we use
cylindrical shells.

cross section

If we add all the cylinders from the
smallest to the largest:

2
f 27rx(x2 +1) dx
0
=2zr -h-thickness 2
27z'j X2+ x dx 2z[4+2]
ZZH)T((XZ +1) dx 0 ,
— 1 1
r | 27[|:7X4 +E xz} 127
circumférence _thickness 0 -
Find the volume generated s
when this shape is revolved 5
about the y axis. ,
0 1 2 3 4 5 6 7 8
y= —A(x2 ~10x+16)
9
We can't solve for X,
SO we can't use a
horizontal slice
directly.
N

If we take a
vertical slice

and revolve it
about the y-axis
we get a cylinder.

_ e
Shell method: y=glx -10x+19)

Lateral surface area of cylinder

=circumference - height
=2zr-h
Volume of thin cylinder = 2zr -h-dx

13
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Volume of thin cylinder = 2zr -h-dx y:-g(x2 ~10x+16)

Jj Zﬂ?[—g(xz -10x +16)} dx =1607
BTy [ ~502.655 cm®

circumference N thickness

Note: When entering this into the calculator, be sure to enter
the multiplication symbol before the parenthesis.

When the strip is parallel to the axis of rotation, use the
shell method.

When the strip is perpendicular to the axis of rotation,
use the washer method.

Day 71/72
12/4/13

7.3 Volumes

Objectives: eUse integration to calculate volumes of
solids of revolutions

Assignment: pg. 407 #’s 15-41 odd, 63-68,
AP Review #’s 1-3

Quiz 7.1-7.3 Monday
Free Response Tuesday
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The region bounded by
y=x%and Y =2Xis
revolved about the y-axis.
Find the volume.

\// If we use a horizontal slice:
) _ . .
y=xt y=2 The “disk” now has a hole in
Jy =x Y_y it, making it a “washer”.
2

The volume of the washer is: (zR?—zr?)-thickness
2
V=J.:”[(\/§)z’[%j ]dy ﬂ(szrz)dy
LN
outer inner
v =.[:”[y7% yZde radius  radius

e 1, 1, 1. _ 16] 8z
Verlyogy e =”[Ey’ﬁyo BT Ry

This application of the method of slicing is called the
washer method. The shape of the slice is a circle
with a hole in it, so we subtract the area of the inner
circle from the area of the outer circle.

b
The washer method formulais:  V = ﬂ.[ R? —r? dx
a

y=x"|f the same region is
rotated about the line X=2:

The outer radius is:
R=2-2
D 2
The inner radius is:
Y r=2-\y
y
2

2
=nj:xf—2y+y7—l+4\/§—y dy

4 1, %
=7r_|'0—3y+zy +4y? dy

.
3,1 .82

B I IR I

”{zy 2’73

=7r-[—24+E+%} s

4 y?
=ﬂj0(4—2y+7]—(4—4 y+y)dy
33 3 -

15
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5
) ”IISA—(y—l)dy+4;r
"5y dy+4
) y=x2+1 ”L Ty dyrar
p 1,T
;{5y77y2} +4r
0 12 2 1
=2
y-l=x  x=4y-1 2 2
5.5 2 2 §_§
”LT —(Jy—l) dy+7-2°-1 ”[2 2 +4r
lind
e | e I
radius 2
thickness
of slice 87 +4r =127

Here is another
y=x2+1 way we coul_d
approach this
problem:

cross section

If we take a vertical slice and revolve it about the y-axis
we get a cylinder.

If we add all of the cylinders together, we can reconstruct
the original object.

cross section

The volume of a thin, hollow cylinder is given by:

Lateral surface area of cylinder - thickness

= circumference - height - thickness

=2zr -h-thickness

=27x(xX* +1) dx

Fh

circumference thickness

16
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This is called the
shell method

because we use
cylindrical shells.

cross section

If we add all the cylinders from the
smallest to the largest:

2
f 27rx(x2 +1) dx
0
=2zr -h-thickness 2
Zﬁj X2 +x dx 27[4+2]
ZZH)T((XZ +1) dx 0 ,
— 1 1
r | 27[|:7X4 +E xz} 127
circumférence _thickness 0 -
Find the volume generated s
when this shape is revolved 5
about the y axis. ,
0 1 2 3 4 5 6 7 8
y= —A(x2 ~10x+16)
9
We can't solve for X,
SO we can't use a
horizontal slice
directly.
N

If we take a
vertical slice

and revolve it
about the y-axis
we get a cylinder.

_ e
Shell method: y=glx -10x+19)

Lateral surface area of cylinder

=circumference - height
=2zr-h
Volume of thin cylinder = 2zr -h-dx

17
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Volume of thin cylinder = 2zr -h-dx y:-g(x2 ~10x+16)

Jj Zﬂ?[—g(xz -10x +16)} dx =1607
L [ ~502.655 cm’
circumference N thickness

Note: When entering this into the calculator, be sure to enter
the multiplication symbol before the parenthesis.

N
When the strip is parallel to the axis of rotation, use the
shell method.
When the strip is perpendicular to the axis of rotation,
use the washer method.
T

7.4 Lengths of Curves

Objectives: eUse integration to calculate lengths of
curves in a plane

Assignment: pg. 416 #'s 1-18, 32-37

18
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Lengths of Curves:

ds If we want to approximate the

dy length of a curve, over a short

dx distance we could measure a
straight line.

By the pythagorean theorem:

ds? = dx® + dy? 2
L=| (1+$’(2J dx

ds = \/dx? +dy?
Length of Curve (Cartesian)
J'ds:J'\/dx2+dy2 b o7
2 2 L= J 1+ (*) dx
S :j d—szrd—y2 dx? dx
dx® dx

Example: 2
L y:—x2+9 L:J'O3 1+(d)/j dx
y=-x"+9 dx

0<x<3 & 3
L= _[o 1/1+(—2x)2 dx
L= _[03\/1+4x2 dx

Now what? This doesn't fit any formula, and
we started with a pretty simple example!
The TI-89 gets:
L. In (\/ﬁ + 6)
L= —

BN ow s o e N ® @

o
-
~
w

. 3425 ~9.74708875861

-

Example:
If we check the length of a straight line:

2,02 _ (2
9°+3=C The curve should be
0<x<3 81+9=C? alittle longer than
A2 the straight line, so
90=C our answer seems

C ~9.49 reasonable.

y=-x"+9

The TI-89 gets:
i In (\/ﬁ + 6)
L=/

4

BN ow s oo o N o ©

o
.
~
w

. 3J23—7 ~9.74708875861

N

19
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Example:

y= X249 Yoq may want to let the calculator find the
derivative too:

0<x<3

(x"2+9
[ @+rdy.072,x0,3 Kl ESER

Important: . q 2
You must delete -[ 1+£(y)) dx
the variable y Y dx

when you are
— . done!

o kN ow o » e N ® ©

Example:
2
L=[ 1+ (dyj dx
; 5 . -1 dx
X +y*=1
yz —1-x2 ~ 3.1415926536

y=v1-x* ~z ()

If you have an equation that is easier to solve for x than
for y, the length of the curve can be found the same way.

3 2

X=y 0<y<3
1 Y so-] x Jenter

0 1 2 3 4 5 6 7 8 9

2 Notice that X and Yy are reversed.
L= 1+ (dxj Oy

dy

[/ @+d(xy)"2),y,0,3) ~9.74708875861

20
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Don't forget to clear the X and Yy variables when you are done!

(Fa Wal )l v ENTER]

Day 79
12/16/13

7.5 Applications from Science and Stats

Objectives: *Model problems involving rates of change
in a variety of applications

Assignment: pg. 425 #'s 1-6, 17, 36-39,
AP Review #’s 1-3

Chapter 7 Test- Tuesday

Review: Hooke’ s Law: F = kx

A spring has a natural length of 1 m.
Aforce of 24 N stretches the spring to 1.8 m.

alFindk: F =kx
24=k(.8)
30=k F =30x

ﬂ How much work would be needed to stretch the spring
3m beyond its natural length?

b 3
WzLF(X) dx W:15x20

W= jj30x dx W =135 newton-meters

21
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Over a very short distance, even a non-constant force

doesn’ t change much, so work becomes: F (X)dX

If we add up all these small bits of work we get:

W:j:F(x) dx

N
A leaky 5 Ib bucket is raised 20 feet
The rope weights 0.08 Ib/ft.
The bucket starts with 2 gal (16 Ib) of water
and is empty when it just reaches the top.
Work:
Bucket: 51b - 20 ft =100 ft-Ib
Water: The force is proportional to
remaining rope. 4
20—-x 4
F(x)= 167 =16——X
( ) 5.207 5
b 20 4
W =["F(x) dx =, 16— x dx
N

A leaky 5 Ib bucket is raised 20 feet
The rope weights 0.08 Ib/ft.

The bucket starts with 2 gal (16 Ib) of water
and is empty when it just reaches the top.

Work:
Bucket: 51b - 20 ft =100 ft-lb

Water: W :jzolﬁ—ﬂxdx
0 5

20

W:lGx—gx2
5

0

2.20°

W =16-20- =160 ft-Ib
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A leaky 5 Ib bucket is raised 20 feet
The rope weights 0.08 Ib/ft.

The bucket starts with 2 gal (16 Ib) of water
and is empty when it just reaches the top.

Work:
Bucket: 51b - 20 ft =100 ft-Ib
Water: W =160 ft-lb

Rope: F(x)=(20-x)(0.08)
W = ["(1.6-.08x) dx
w :1.6x7.04x2‘§0 =16 ft-Ib
Total: 100+160+16 5

—5ft— 1 I want to pump the water out of this
o tank. How much work is done?
\_/

-

EN
=

-

w=Fd

The force is the weight of the water.
The water at the bottom of the tank
must be moved further than the

¥_/ water at the top.

4ft Consider the work to move one
T « ”
e 0 slab” of water:

weight of slab = density - volume

4 - -5

-1: =62.5-7-5%dx
,,,,,,,,,,, =1562.57 dx

distance=x+4 N

5. T I want to pump the water out of this
e jf tank. How much work is done?
e

w=Fd
weight of slab = density - volume
_________ =625 7-5dx
- =1562.57 dx
T .
4ft distance = x+4
<O ET
" work = (x+4)1562.57 dx
.JL distance  force
&
.................. 10
e W= (x+4)1562.57 d

23
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| want to pump the water out of this
tank. How much work is done?

work = (x+4)1562.57 dx
\_Y_}H_/

distance  force

W = [(x+4)1562.57 dx

1 , 10
A 1 horsepower pump, w :1562'5”[5 X+ 44
rated at 550 ft-Ib/sec,

could empty the tank W :1562.5”[50+40]
in just under 14

minutes! W =~ 441,786 ft-Ib

0

H 10ft ——
— L A conical tank is filled to within 2 ft of

T _/ 2% the top with salad oil weighing 57 Ib/ft3.

How much work is required to pump
the oil to the rim?

Consider one slice (slab) first:

Wiy =F-d

(5.10) W, = density~vo|ume~distlance
X »\; / 1V x
y=2¢ W, =57 l:;z(z y) }dy(lO—y)
X

1
=2y

.t
d

8 1
w :jo (10— y)57;z.Z y2dy

-

L A conical tank if filled to within 2 ft of
the top with salad oil weighing 57 Ib/ft3.
How much work is required to pump
the oil to the rim?
1 2
75 y | |dy(10-y)

(5,10) 8 1
1;[; . / w :jo (10—y)57;z«zy2dy
JT y=2x _57x I 10y7—y* dy

_fiﬂ@ys_y;‘s
4137 4]

24
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10t —
_l_ A conical tank if filled to within 2 ft of
2ft_ the top with salad oil weighing 57 Ib/ft3.

]

How much work is required to pump

10 ft the oil to the rim?
_ 57x (8 2 3
L W_TIOlOy -y dy
wo572[10 0 v
ni (5.10) 4|3 T4
i — x -l

4 3 4

W = 30,561 ft-Ib

y=2 :@{5120_4096}

(L
2y

—

What is the force on the bottom of
the aquarium?
2ft .
Force = weight of water
= density - volume

—625 2 23ttt
ft

=3751b

If we had a 1 ft x 3 ft plate on
the bottom of a 2 ft deep
wading pool, the force on the
plate is equal to the weight of
the water above the plate.

62.5 % 2ft 3ft-1ft =3751b

— 5 ——

density depth area

N All the other water in the
pressure pool doesn’t affect the
answer!

25
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What is the force on the front face
of the aquarium?
2 ft

Depth (and pressure) are not constant.

If we consider a very thin horizontal
strip, the depth doesn’ t change much,
and neither does the pressure.

F,=625-y-3dy |itisjusta
0 ‘—v—’detpt‘h—v—’ coincidence
I density area | thatthis
y : 2 matches the
Zﬁl dTy F= J.O 62.5-y-3 dy| first answer!
2 2
3ft F =7187'5 y?| =3751b
2 0 R

J We could have put Aflat plate is submerged vertically
T the origin at the as shown. (Itis a window in the
2t surface, but the math| shark pool at the city aquarium.)

was easier this way.

! Find the force on one side of the
Y
] \ ] plate.
i ik y=x Depth of strip:  (5-)
l R e Length of strip: 2x =2y
Area of strip: 2y dy

_ Sy 2
F,=625(5-y)2y dy F=125] 5y-y* dy
LY_J\_Y_I

oz 2 13
density depth area F _125[2 o3y l)

3
- Lrasts-yery

-

Normal Distribution: i
For many real-life events, a

frequency distribution plot
appears in the shape of a
13.5% “normal curve”.

i 0, j /
4% N 2.35%

SR The mean 4 (or X )isinthe
30 20-6 u o 20 3¢ Middle of the curve. The

< 68% shape of the curve is
o determined by the standard

95% deviation o .

99.7%
M mu

“68, 95, 99.7 rule” _

X x-bar
O sigma

26
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Normal Distribution:

The area under the curve
13.5% from a to b represents the
/ probability of an event
2.35% " o
\ occurring within that range

-30 20 —6‘ ,u o 20 30
“68, 95, 99.7 rule”

In stat we used z-scores and a table of values to determine
probabilities. If we know the equation of the curve we can
use calculus (and our calculator) to determine probabilities:

Normal Probability 1 (—(x—y)zlzaz)
Density Function: f (X) == —
(Gaussian curve) o 27 |
Normal Distribution:
The good news is that you do not have to memorize this
equation!
Example 7 on page 424 shows how you could integrate
this function to predict probabilities.
In real life, statisticians rarely see this function. They use
computer programs or graphing calculators with statistics
software to draw the curve or predict the probabilities.
Normal Probability 1 (—(x—;z)2/202)
Density Function: f (X) =—F——¢
(Gaussian curve) o+ 27 R

27
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