8.5 Introduction to Quadratic Functions

A. Definition

f is a quadratic function if $f(x)=a x^{2}+b x+c$, where $a \neq 0$.

The graph is a parabola.

B. Parabolas

1. Parabolas

2. v is the vertex of the parabola

C. Formula for the Vertex

1. Vertex Formula: $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
2. See MTH103: College Algebra for the justification of this formula.

D. Graphing Quadratic Functions (Parabolas)

1. Locate the vertex: use the vertex formula
2. Find the x and y intercepts.
3. Plot the points and connect in a smooth curve, recognizing whether it opens up or down.

E. Examples of Graphing

Example 1: Graph f, where $f(x)=2 x^{2}+12 x+15$

Solution

1. Locate vertex:

$$
\begin{aligned}
-\frac{b}{2 a}=-\frac{12}{2(2)} & =-\frac{12}{4}=-3 \\
f\left(-\frac{b}{2 a}\right)=f(-3) & =2(-3)^{2}+12(-3)+15 \\
& =2 \cdot 9-36+15 \\
& =-18+15 \\
& =-3
\end{aligned}
$$

Vertex Formula: $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
Thus the vertex is $(-3,-3)$
2. Intercepts
y-intercept:

$$
\text { set } x=0: \quad f(0)=2(0)^{2}+12(0)+15=15
$$

x-intercept:

$$
\begin{aligned}
& \text { set } y=0: \\
& \\
& \quad 0=2 x^{2}+12 x+15 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-12 \pm \sqrt{144-4(2)(15)}}{2(2)} \\
& x=\frac{-12 \pm \sqrt{144-120}}{4}=\frac{-12 \pm \sqrt{24}}{4}=\frac{-12 \pm 2 \sqrt{6}}{4} \\
& x=\frac{2(-6 \pm \sqrt{6})}{4}=\frac{-6 \pm \sqrt{6}}{2}
\end{aligned}
$$

3. Note the graph opens upward:

Example 2: Graph f, where $f(x)=-2 x^{2}+4 x-7$

Solution

1. Locate vertex:

$$
\begin{aligned}
& -\frac{b}{2 a}=-\frac{4}{2(-2)}
\end{aligned}=-\frac{4}{-4}=10 \text {. } \begin{aligned}
f\left(-\frac{b}{2 a}\right)=f(1) & =-2(1)^{2}+4(1)-7 \\
& =-2+4-7 \\
& =-5
\end{aligned}
$$

Vertex Formula: $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
Thus the vertex is $(1,-5)$
2. Intercepts
y-intercept:

$$
\text { set } x=0: \quad f(0)=-2(0)^{2}+4(0)-7=-7
$$

x-intercept:

$$
\begin{aligned}
& \text { set } y=0 \\
& \qquad \\
& \qquad \quad 0=-2 x^{2}+4 x-7 \\
& x
\end{aligned} \quad=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-4 \pm \sqrt{16-4(-2)(-7)}}{2(-2)} .
$$

$$
\begin{gathered}
x=\frac{-4 \pm \sqrt{16-56}}{-4}=\frac{-4 \pm \sqrt{-40}}{-4} \\
\text { no real solutions! }
\end{gathered}
$$

Thus, no x-intercepts.
3. Note the graph opens downward:

F. Projectile Motion

A thrown object follows a parabolic path given by

$$
\mathfrak{f}(t)=-16 t^{2}+v_{0} t+h_{0}
$$

v_{0} : initial upward speed
h_{0} : initial height thrown from

Units of height: feet

The vertex is the peak of the path.

Features

1. The t-coordinate (" x-coordinate") of the vertex tells you when the projectile reaches its maximum height.
2. The " y-coordinate" of the vertex tells you what the maximum height is.
3. The projectile hits the ground when $f(t)=0$.

G. Projectile Motion Example

A ball is thrown upward with a speed of $16 \frac{\mathrm{ft}}{\mathrm{s}}$ from a building 32 feet high. What is the maximum height of the ball? When does it reach the ground?

Solution

Use the projectile motion model:

$$
\begin{aligned}
f(t) & =-16 t^{2}+v_{0} t+h_{0}=-16 t^{2}+16 t+32 \\
\text { Now }-\frac{b}{2 a} & =-\frac{16}{2(-16)}=\frac{1}{2}
\end{aligned}
$$

Also,

$$
\begin{aligned}
f\left(-\frac{b}{2 a}\right)=f\left(\frac{1}{2}\right) & =-16\left(\frac{1}{2}\right)^{2}+16\left(\frac{1}{2}\right)+32 \\
& =-16 \cdot \frac{1}{4}+8+32 \\
& =-4+8+32 \\
& =36
\end{aligned}
$$

Thus the vertex is $\left(\frac{1}{2}, 36\right)$

Now the maximum height is the y-coordinate of the vertex:

The ball reaches the ground when $f(t)=0$:

$$
\begin{aligned}
& -16 t^{2}+16 t+32=0 \\
& -16\left(t^{2}-t-2\right)=0 \\
& -16(t-2)(t+1)=0 \\
& t=2 \quad \text { or } \quad t=-1
\end{aligned}
$$

Since $t=-1$ is not physical, we must have $t=2$.

Thus the ball reaches the ground 2 seconds after being thrown.

