8.4 More on Literal Equations; Pythagorean Theorem

A. Literal Equations

When solving literal equations for a variable, sometimes roots and/or quadratic formula must be used.

Example 1: Solve $D=\frac{5 x y w^{2}}{6 z}$ for w

Solution

$$
\begin{array}{ll}
\text { Multiply by } 6 z: & 6 z D=5 x y w^{2} \\
\text { Divide by } 5 x y: & \frac{6 z D}{5 x y}=w^{2}
\end{array}
$$

Ans $w= \pm \sqrt{\frac{6 z D}{5 x y}}$

Example 2: Solve $3 w x^{2}-5 x+w^{2}=0$ for x

Solution

Quadratic formula:

$$
\begin{aligned}
a=3 w, \quad b & =-5, \quad c=w^{2} \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{5 \pm \sqrt{25-4(3 w)\left(w^{2}\right)}}{2(3 w)}
\end{aligned}
$$

Ans $x=\frac{5 \pm \sqrt{25-12 w^{3}}}{6 w}$

B. Pythagorean Theorem-Development

Consider the following picture:

Area of the inner square: c^{2}

Area of the each triangle: $\frac{1}{2} a b$

Area of the outer square: $(a+b)^{2}$

We see that:

Area of the outer square $=$ Area of the inner square + Area of the four triangles

Thus $(a+b)^{2}=c^{2}+4\left(\frac{1}{2} a b\right)$
Then $a^{2}+2 a b+b^{2}=c^{2}+2 a b$

Hence, $a^{2}+b^{2}=c^{2}$

This result is called the Pythagorean Theorem.

C. Pythagorean Theorem

Given a right triangle:

The sides satisfy the Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

Notation:

a and b are called the legs of the right triangle.
c is called the hypotenuse of the right triangle.

Note: For the legs, it doesn't matter which side you call a and which you call b.

D. Examples

Example 1: Given the right triangle:

If $a=6$ and $b=8$, what is c ? (picture above not drawn to scale)

Solution

Use the Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

$$
6^{2}+8^{2}=c^{2} \Longrightarrow c^{2}=36+64=100 \Longrightarrow c= \pm 10
$$

Since we have a physical length, c can not be negative.

Ans $c=10$

Example 2: Given the right triangle:

If $a=\sqrt{6}$ and $c=5$, what is b ? (picture above not drawn to scale)

Solution

Use the Pythagorean Theorem: $\quad a^{2}+b^{2}=c^{2}$

$$
(\sqrt{6})^{2}+b^{2}=5^{2} \Longrightarrow 6+b^{2}=25 \Longrightarrow b^{2}=19 \Longrightarrow b= \pm \sqrt{19}
$$

Since we have a physical length, b can not be negative.
Ans $b=\sqrt{19}$

Example 3: Given the right triangle:

If $c=\sqrt{15}$ and $a=3 b$, what are a and b ? (picture above not drawn to scale)

Solution

Use the Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

$$
(3 b)^{2}+b^{2}=(\sqrt{15})^{2} \Longrightarrow 9 b^{2}+b^{2}=15 \Longrightarrow 10 b^{2}=15
$$

Thus:

$$
b^{2}=\frac{15}{10}=\frac{3}{2} \Longrightarrow b= \pm \sqrt{\frac{3}{2}}
$$

Since we have a physical length, b can not be negative.

Then:

$$
b=\sqrt{\frac{3}{2}}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{6}}{2}
$$

Now $a=3 b$, so we have:

$$
a=3\left(\frac{\sqrt{6}}{2}\right)=\frac{3 \sqrt{6}}{2}
$$

Ans $\quad a=\frac{3 \sqrt{6}}{2} \quad$ and $\quad b=\frac{\sqrt{6}}{2}$

