8.2B Consequences of the Quadratic Formula

A. Discriminant

$$
\text { Since } a x^{2}+b x+c=0 \Longrightarrow \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text {, we see that if }
$$

1. $b^{2}-4 a c>0$, we get 2 real solutions
2. $b^{2}-4 a c=0$, we get 1 real solution
3. $b^{2}-4 a c<0$, we get no real solutions
$D=b^{2}-4 a c$ is called the discriminant.

B. Discriminant Examples

Example 1: How many real solutions does $3 x^{2}-4 x+5=0$ have?

Solution

$$
D=b^{2}-4 a c=(-4)^{2}-4(3)(5)=16-60=-44<0
$$

Ans no real solutions

Example 2: How many real solutions does $4 x^{2}+49=44 x+12$ have?

Solution

Move to one side: $\quad 4 x^{2}-44 x+37=0$
$D=b^{2}-4 a c=(-44)^{2}-4(4)(37)=1344>0$
Ans 2 real solutions

C. Writing a Quadratic Equation

If $x=c$ and $x=d$ are two solutions, then $x-c=0$ and $x-d=0$.
Thus $(x-c)(x-d)=0$
Then $a(x-c)(x-d)=0$ for a number a (usually chosen to clear fractions).

This is a quadratic equation.

Result:

> | Given two solutions $x=c$ and $x=d$, |
| :--- |
| the quadratic equation is $a(x-c)(x-d)=0$. |

D. Examples of Writing a Quadratic Equation

Example 1: Write a quadratic equation with integer coefficients so that it has solutions $x=3$ and $x=-4$

Solution

$$
a(x-3)(x+4)=0 \Longrightarrow a\left(x^{2}+x-12\right)=0
$$

Choose $a=1$ to get integer coefficients

Ans $\quad x^{2}+x-12=0$

Example 2: Write a quadratic equation with integer coefficients so that it has solutions $x=-2$ and $x=\frac{1}{3}$

Solution

$$
\begin{aligned}
& a(x+2)\left(x-\frac{1}{3}\right)=0 \Longrightarrow a\left[x^{2}-\frac{1}{3} x+2 x-\frac{2}{3}\right]=0 \\
& a\left[x^{2}-\frac{5}{3} x-\frac{2}{3}\right]=0
\end{aligned}
$$

Choose $a=3$ to clear fractions:

$$
3\left(x^{2}-\frac{5}{3} x-\frac{2}{3}\right)=0 \Longrightarrow 3 x^{2}-5 x-2=0
$$

Ans $3 x^{2}-5 x-2=0$

