8.2B Consequences of the Quadratic Formula

A. Discriminant

Since $ax^2 + bx + c = 0 \implies \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, we see that if

- 1. $b^2 4ac > 0$, we get 2 real solutions
- 2. $b^2 4ac = 0$, we get 1 real solution
- 3. $b^2 4ac < 0$, we get no real solutions

 $D = b^2 - 4ac$ is called the **discriminant**.

B. Discriminant Examples

Example 1: How many real solutions does $3x^2 - 4x + 5 = 0$ have?

Solution

$$D = b^2 - 4ac = (-4)^2 - 4(3)(5) = 16 - 60 = -44 < 0$$

Ans no real solutions

Example 2: How many real solutions does $4x^2 + 49 = 44x + 12$ have?

Solution

Move to one side: $4x^2 - 44x + 37 = 0$ $D = b^2 - 4ac = (-44)^2 - 4(4)(37) = 1344 > 0$ Ans 2 real solutions

C. Writing a Quadratic Equation

If x = c and x = d are two solutions, then x - c = 0 and x - d = 0. Thus (x - c)(x - d) = 0Then a(x - c)(x - d) = 0 for a number a (usually chosen to clear fractions).

This is a quadratic equation.

Result:

Given two solutions x = c and x = d, the quadratic equation is a(x-c)(x-d) = 0.

D. Examples of Writing a Quadratic Equation

Example 1: Write a quadratic equation with integer coefficients so that it has solutions x = 3 and x = -4

Solution

$$a(x-3)(x+4) = 0 \implies a(x^2+x-12) = 0$$

Choose $a = 1$ to get integer coefficients

Ans $x^2 + x - 12 = 0$

Example 2: Write a quadratic equation with integer coefficients so that it has solutions x = -2 and $x = \frac{1}{3}$

Solution

$$a (x+2)\left(x-\frac{1}{3}\right) = 0 \implies a\left[x^2 - \frac{1}{3}x + 2x - \frac{2}{3}\right] = 0$$
$$a\left[x^2 - \frac{5}{3}x - \frac{2}{3}\right] = 0$$

Choose a = 3 to clear fractions:

$$3\left(x^2 - \frac{5}{3}x - \frac{2}{3}\right) = 0 \implies 3x^2 - 5x - 2 = 0$$

Ans $3x^2 - 5x - 2 = 0$