8.1A Plus/Minus

A. \pm and \mp

1. Notation

$$
\begin{aligned}
& \pm \quad \text { plus or minus } \\
& \mp \quad \text { minus or plus }
\end{aligned}
$$

These are a shorthand way of writing two solutions.
2. Minus Signs:

$$
\begin{aligned}
& -(\pm)=\mp \\
& -(\mp)= \pm
\end{aligned}
$$

3. In expressions involving \pm or \mp, we have two solutions.

One by taking the "top" sign and one by taking the "bottom" sign.

B. Examples

Example 1: Write the individual expressions for $\frac{8 \mp \sqrt{2}}{4 \pm \sqrt{3}}$ and simplify.

Solution

a. "Top signs": $\frac{8-\sqrt{2}}{4+\sqrt{3}}$

Now rationalize:

$$
\frac{8-\sqrt{2}}{4+\sqrt{3}} \cdot \frac{4-\sqrt{3}}{4-\sqrt{3}}=\frac{32-8 \sqrt{3}-4 \sqrt{2}+\sqrt{6}}{16-3}=\frac{32-8 \sqrt{3}-4 \sqrt{2}+\sqrt{6}}{13}
$$

b. "Bottom signs": $\frac{8+\sqrt{2}}{4-\sqrt{3}}$

Now rationalize:

$$
\frac{8+\sqrt{2}}{4-\sqrt{3}} \cdot \frac{4+\sqrt{3}}{4+\sqrt{3}}=\frac{32+8 \sqrt{3}+4 \sqrt{2}+\sqrt{6}}{16-3}=\frac{32+8 \sqrt{3}+4 \sqrt{2}+\sqrt{6}}{13}
$$

Example 2: Simplify $6-(4 \pm \sqrt{5})$ and simplify.

Solution

Use the distributive property and change all signs as required:

$$
6-(4 \pm \sqrt{5})=6-4 \mp \sqrt{5}=2 \mp \sqrt{5}
$$

C. Comment on Difference

\pm and \mp are the same provided only one of them is present in an expression:
a. Thus $2 \mp \sqrt{5}=2 \pm \sqrt{5}$.
b. However, $\frac{8 \mp \sqrt{2}}{4 \pm \sqrt{3}} \neq \frac{8 \pm \sqrt{2}}{4 \pm \sqrt{3}} \quad$ (Why?)

