7.5 Radical Equations

A. Radical Equations

These are **equations** with radicals in them.

Here is the general strategy for solving them:

- 1. Isolate a radical (get one radical by itself on one side)
- 2. Eliminate the radical by raising each side to the appropriate power.
- 3. Repeat until all radicals are eliminated, and solve.
- 4. You MUST check you solutions. Some solutions are extraneous (i.e. fake).

B. Examples

Example 1: Solve $\sqrt[3]{2x-4} - 2 = 0$ for *x*.

Solution

Isolate the radical: $\sqrt[3]{2x-4} = 2$

Raise each side the third power: $(\sqrt[3]{2x-4})^3 = 2^3$

Thus we have:

$$2x - 4 = 8 \implies 2x = 12 \implies x = 6.$$

Now we have to do a MANDATORY check:

$$\sqrt[3]{2(6) - 4} - 2 \stackrel{?}{=} 0$$

 $\sqrt[3]{12 - 4} - 2 \stackrel{?}{=} 0$
 $\sqrt[3]{8} - 2 \stackrel{?}{=} 0$
 $2 - 2 \stackrel{?}{=} 0 \checkmark$

Ans x = 6

Example 2: Solve $5 + \sqrt{2x+5} = x$ for x.

Solution

We **must** isolate first: $\sqrt{2x+5} = x-5$

Now square each side: $(\sqrt{2x+5})^2 = (x-5)^2$

Apply the square formula on the right: $2x + 5 = x^2 - 10x + 25$

We now have a quadratic equation, so we move everything to one side:

 $x^2 - 12x + 20 = 0$

We now factor this, using AntiFOIL:

$x^2 - 12x + 20 = 0$	20	TSP: -, -
$x^2 - x - 11x + 6 = 0$	11	
$x^2 - 2x - 10x + 6 = 0$	20	
x(x-2) - 10(x-2) = 0		
(x-2)(x-10) = 0		

Now use the Zero Product Principle:

x - 2 = 0 OR x - 10 = 0x = 2 OR x = 10

Now we have to do a MANDATORY check:

Check x = 2: $5 + \sqrt{2(2) + 5} \stackrel{?}{=} 2$ $5 + \sqrt{4 + 5} \stackrel{?}{=} 2$ $5 + \sqrt{9} \stackrel{?}{=} 2$ $5 + 3 \stackrel{?}{=} 2$ X

Check x = 10:

 $5 + \sqrt{2(10) + 5} \stackrel{?}{=} 10$ $5 + \sqrt{20 + 5} \stackrel{?}{=} 10$ $5 + \sqrt{25} \stackrel{?}{=} 10$ $5 + 5 \stackrel{?}{=} 10 \checkmark$

Thus we have

Ans x = 10

Example 3: Solve $\sqrt{2x+3} - \sqrt{x+2} = 2$ for x.

Solution

We **must** isolate one radical first: $\sqrt{2x+3} = 2 + \sqrt{x+2}$

Now square each side: $(\sqrt{2x+3})^2 = (2+\sqrt{x+2})^2$

Apply the square formula on the right: $2x + 3 = 4 + 4\sqrt{x + 2} + (x + 2)$

Now we need to isolate the remaining radical:

$$2x + 3 = 6 + x + 4\sqrt{x + 2}$$
$$4\sqrt{x + 2} = x - 3$$
$$\sqrt{x + 2} = \frac{x - 3}{4}$$

Now square each side again:

$$(\sqrt{x+2})^2 = \left(\frac{x-3}{4}\right)^2$$

 $x+2 = \frac{(x-3)^2}{16}$

Apply the square formula on the right: $x + 2 = \frac{x^2 - 6x + 9}{16}$

Clear fractions: $x^2 - 6x + 9 = 16(x + 2)$

We now have a quadratic equation, so we move everything to one side:

$$x^{2} - 6x + 9 = 16x + 32$$
$$x^{2} - 22x - 23 = 0$$

We now factor this, using AntiFOIL:

$x^2 - 22x - 23 = 0$	-23	TSP: +, -
$x^2 + x - 23x - 23 = 0$	-23	/
x(x+1) - 23(x+1) = 0		
(x+1)(x-23) = 0		

Now use the Zero Product Principle:

x + 1 = 0 OR x - 23 = 0x = -1 OR x = 23

Now we have to do a MANDATORY check:

Check x = -1: $\sqrt{2(-1) + 3} - \sqrt{-1 + 2} \stackrel{?}{=} 2$ $\sqrt{-2 + 3} - \sqrt{1} \stackrel{?}{=} 2$ $\sqrt{1} - \sqrt{1} \stackrel{?}{=} 2$ $1 - 1 \stackrel{?}{=} 2$ X

Check x = 23:

$$\sqrt{2(23) + 3} - \sqrt{23 + 2} \stackrel{?}{=} 2$$
$$\sqrt{49} - \sqrt{25} \stackrel{?}{=} 2$$
$$7 - 5 \stackrel{?}{=} 2 \checkmark$$

Thus we have

Ans x = 23

Example 4: Solve $\sqrt{3x+4} + \sqrt{x+5} = \sqrt{7-2x}$ for *x*.

Solution

Isolate a radical first: in fact, the radical on the right already is!

Now square each side:
$$(\sqrt{3x+4} + \sqrt{x+5})^2 = (\sqrt{7-2x})^2$$

Apply the square formula on the left:

$$(3x+4) + 2\sqrt{3x+4}\sqrt{x+5} + (x+5) = 7 - 2x$$

Now we need to isolate another radical:

$$2\sqrt{3x + 4}\sqrt{x + 5} + 4x + 9 = 7 - 2x$$
$$2\sqrt{3x + 4}\sqrt{x + 5} = -2 - 6x$$
$$\sqrt{x + 5} = \frac{-2 - 6x}{2\sqrt{3x + 4}}$$
$$\sqrt{x + 5} = \frac{-2(1 + 3x)}{2\sqrt{3x + 4}}$$
$$\sqrt{x + 5} = \frac{-1(1 + 3x)}{\sqrt{3x + 4}}$$

Now square each side:

$$(\sqrt{x+5})^2 = \left(\frac{-1(1+3x)}{\sqrt{3x+4}}\right)^2$$

 $x+5 = \frac{(1+3x)^2}{(\sqrt{3x+4})^2}$

Now apply the square formula:

$$x + 5 = \frac{1 + 6x + 9x^2}{3x + 4}$$

Clearing fractions: $1 + 6x + 9x^2 = (x + 5)(3x + 4)$

We now have a quadratic equation; multiply out and move to one side:

$$9x^{2} + 6x + 1 = 3x^{2} + 19x + 20$$
$$6x^{2} - 13x - 19 = 0$$

We now factor this, using AntiFOIL:

Now use the Zero Product Principle:

x + 1 = 0 OR 6x - 19 = 0x = -1 OR $x = \frac{19}{6}$

Now we have to do a MANDATORY check:

Check
$$x = -1$$
:
 $\sqrt{3(-1) + 4} - \sqrt{-1 + 5} \stackrel{?}{=} \sqrt{7 - 2(-1)}$
 $\sqrt{1} + \sqrt{4} \stackrel{?}{=} \sqrt{9}$
 $1 + 2 \stackrel{?}{=} 3 \checkmark$

Check
$$x = \frac{19}{6}$$
:
 $\sqrt{3(\frac{19}{6}) + 4} + \sqrt{\frac{19}{6} + 5} \stackrel{?}{=} \sqrt{7 - 2(\frac{19}{6})}$
 $\sqrt{\frac{19}{2} + \frac{4}{1}} + \sqrt{\frac{19}{6} + \frac{5}{1}} \stackrel{?}{=} \sqrt{\frac{7}{1} - \frac{19}{3}}$
 $\sqrt{\frac{19}{2} + \frac{8}{2}} + \sqrt{\frac{19}{6} + \frac{30}{6}} \stackrel{?}{=} \sqrt{\frac{21}{3} - \frac{19}{3}}$
 $\sqrt{\frac{27}{2}} + \sqrt{\frac{49}{6}} \stackrel{?}{=} \sqrt{\frac{2}{3}}$
 $\frac{\sqrt{27}}{\sqrt{2}} + \frac{\sqrt{49}}{\sqrt{6}} \stackrel{?}{=} \frac{\sqrt{2}}{\sqrt{3}}$
 $\frac{3\sqrt{3}}{\sqrt{2}} + \frac{7}{\sqrt{6}} \stackrel{?}{=} \frac{\sqrt{2}}{\sqrt{3}}$
 $\frac{3\sqrt{3} \cdot \sqrt{2}}{2} + \frac{7\sqrt{6}}{6} \stackrel{?}{=} \frac{\sqrt{2}\sqrt{3}}{3}$
 $\frac{3\sqrt{6}}{2} + \frac{7\sqrt{6}}{6} \stackrel{?}{=} \frac{\sqrt{6}}{3}$
 $\frac{9\sqrt{6}}{6} + \frac{7\sqrt{6}}{6} \stackrel{?}{=} \frac{2\sqrt{6}}{6}$
 $\frac{16\sqrt{6}}{6} \stackrel{?}{=} \frac{2\sqrt{6}}{6}$ X

Thus we have

Ans x = -1