7.4B Square Formula and Powers with Radicals

A. Square Formula

Recall the square formula:
Square formula: $\left\{\begin{array}{l}\text { 1.Square the first term } \\ \text { 2.Product times two } \\ \text { 3.Square the last term }\end{array}\right.$

After applying the square formula with radicals, remember to simplify.

B. Examples

Example 1: \quad Simplify $(\sqrt{6}-\sqrt{3})^{2}$.

Solution

Apply the square formula:

$$
\begin{aligned}
& 6-2 \sqrt{6} \sqrt{3}+3 \\
& 6-2 \sqrt{18}+3 \\
& 9-2 \sqrt{18} \\
& 9-2 \sqrt{9 \cdot 2}
\end{aligned}
$$

Thus we get

Ans $9-6 \sqrt{2}$

Example 2: \quad Simplify $(\sqrt{2 x+3}+5)^{2}$.

Solution

By the square formula, we have

$$
(2 x+3)+10 \sqrt{2 x+3}+25
$$

Combining like terms, we have
Ans $\quad 2 x+28+10 \sqrt{2 x+3}$

Example 3: $\operatorname{Simplify}(\sqrt{x+4}-\sqrt{1-2 x})^{2}$.

Solution

By the square formula, we have

$$
(x+4)-2 \sqrt{x+4} \sqrt{1-2 x}+(1-2 x)
$$

Combining like terms, we have

Ans $5-x-2 \sqrt{x+4} \sqrt{1-2 x}$ OR $5-x-2 \sqrt{(x+4)(1-2 x)}$

Example 4: \quad Simplify $(\sqrt[3]{x-1}+\sqrt{x-1})^{2}$.

Solution

By the square formula, we have

$$
(\sqrt[3]{x-1})^{2}+2 \sqrt[3]{x-1} \sqrt{x-1}+(x-1)
$$

Bringing the power to the inside and rearranging, we have

Ans $\sqrt[3]{(x-1)^{2}}+2 \sqrt{x-1} \sqrt[3]{x-1}+x-1$

C. Powers

Recall that we use the square formula repeatedly with FOIL/factor table.

Example 1: \quad Simplify $(\sqrt{x+3}-\sqrt{x-3})^{3}$.

Solution

$$
(\sqrt{x+3}-\sqrt{x-3})^{3}=(\sqrt{x+3}-\sqrt{x-3})^{2}(\sqrt{x+3}-\sqrt{x-3})
$$

Now apply the square formula:

$$
[(x+3)-2 \sqrt{x+3} \sqrt{x-3}+(x-3)](\sqrt{x+3}-\sqrt{x-3})
$$

Combining like terms:

$$
(2 x-2 \sqrt{x+3} \sqrt{x-3})(\sqrt{x+3}-\sqrt{x-3})
$$

Now use FOIL to get the answer:

Ans $2 x \sqrt{x+3}-2 x \sqrt{x-3}-2(x+3) \sqrt{x-3}-2(x-3) \sqrt{x+3}$

Example 2: \quad Simplify $(\sqrt[3]{x+2}+\sqrt[3]{2 x-1})^{3}$.

Solution

$$
(\sqrt[3]{x+2}+\sqrt[3]{2 x-1})^{3}=(\sqrt[3]{x+2}+\sqrt[3]{2 x-1})^{2}(\sqrt[3]{x+2}+\sqrt[3]{2 x-1})
$$

Now apply the square formula:

$$
\left[(\sqrt[3]{x+2})^{2}+2(\sqrt[3]{x+2})(\sqrt[3]{2 x-1})+(\sqrt[3]{2 x-1})^{2}\right](\sqrt[3]{x+2}+\sqrt[3]{2 x-1})
$$

Use the factor table:

	$(\sqrt[3]{x+2})^{2}$	$2(\sqrt[3]{x+2})(\sqrt[3]{2 x-1})$	$(\sqrt[3]{2 x-1})^{2}$
$\sqrt[3]{x+2}$	$x+2$	$2(\sqrt[3]{x+2})^{2}(\sqrt[3]{2 x-1})$	$(\sqrt[3]{x+2})(\sqrt[3]{2 x-1})^{2}$
$+\sqrt[3]{2 x-1}$	$(\sqrt[3]{x+2})^{2}(\sqrt[3]{2 x-1})$	$2(\sqrt[3]{x+2})(\sqrt[3]{2 x-1})^{2}$	$2 x-1$

Thus we have
Ans $\quad 3 x+1+3(\sqrt[3]{x+2})^{2}(\sqrt[3]{2 x-1})+3(\sqrt[3]{x+2})(\sqrt[3]{2 x-1})^{2}$

