7.2A Introduction to Roots

A. Square Roots

 $\sqrt{\cdot} \Longrightarrow$ means find the **positive** number (or zero) that multiplied by itself gives the number inside

$$\sqrt{4} = 2$$
, because $2 \cdot 2 = 4$

$$\sqrt{81} = 9$$
, because $9 \cdot 9 = 81$

$$\sqrt{0} = 0$$
, because $0 \cdot 0 = 0$

Note: Any number multiplied by itself is **never** negative! Thus, there is **no** real number answer to the square root of a negative number.

Thus, $\sqrt{-9}$ is **not** a real number.

B. Cube Roots

 $\sqrt[3]{\cdot} \implies$ means find the number that multiplied by itself "3 times" gives the inside number

Thus,
$$\sqrt[3]{64} = 4$$
, because $4 \cdot 4 \cdot 4 = 64$ [$4^3 = 64$]

Note: Cube roots can accept negative numbers, and are allowed to give back negative answers!

$$\sqrt[3]{-8} = -2$$
, because $(-2)(-2)(-2) = -8$ $[(-2)^3 = -8]$

C. Roots of Higher Order

We can consider roots of higher order, i.e. $\sqrt[4]{\cdot}$, $\sqrt[5]{\cdot}$, $\sqrt[6]{\cdot}$.

Note that a number inside a root indicates its type. This is called the **index**.

To evaluate these roots, we proceed by analogy, but we have one rule for roots with even index (i.e. $\sqrt{\cdot}$, $\sqrt[4]{\cdot}$, $\sqrt[6]{\cdot}$) and we have another for roots with odd index (i.e. $\sqrt[3]{\cdot}$, $\sqrt[5]{\cdot}$, $\sqrt[7]{\cdot}$).

1. Even Index Roots:

a. can accept only **positive** numbers (or zero)

so
$$\sqrt[6]{-64}$$
 is **not** a real number

b. the answer is always **positive** (or zero)

so
$$\sqrt[4]{81}$$
 is 3 (never -3)

2. Odd Index Roots:

can accept any number, and the answer can be anything (positive, negative, or zero)

D. Domain of a Root Function

Odd roots can accept anything, so an odd root function has a domain of all real numbers.

Even roots can only accept **positive numbers or zero**, so to find the domain of an even root function, do the following:

- 1. Set the **inside** expression ≥ 0
- 2. Solve the inequality.

E. Examples on the Domain of a Root Function

Example 1: Find dom
$$f$$
, where $f(x) = \sqrt[4]{x+1}$

Solution

Even root, so set the inside ≥ 0 : $x + 1 \geq 0$

Solve the inequality: $x \ge -1$

Ans $x \ge -1$

Example 2: Find dom
$$\xi$$
, where $\xi(x) = \sqrt[7]{2x-7}$

Solution

Odd root, so no restrictions . . . All real numbers!

Ans $(-\infty, \infty)$

Example 3: Find dom
$$\xi$$
, where $\xi(x) = \sqrt{2 - 3x}$

Solution

Even root, so set the inside ≥ 0 : $2 - 3x \geq 0$

Solve the inequality: $-3x \ge -2 \implies x \le \frac{2}{3}$

Ans $x \le \frac{2}{3}$

F. Graphing Root Functions

Before graphing a root function, it is useful to determine its domain first. This will guide you as to which points you should try plotting (as we will graph by point-plotting).

Example: Graph
$$f$$
, where $f(x) = \sqrt[4]{2x-4}$

Solution

1. First find the domain:

Since we have an even root, we set the inside ≥ 0 : $2x - 4 \geq 0$

Now solve it:
$$2x - 4 > 0 \implies 2x > 4 \implies x > 2$$

2. Now make an xy table of points, keeping in mind that we should plug in values for x of 2 or greater **only**

$$\begin{array}{c|cccc} x & y & & & & & & & & & & & & & & \\ 2 & & \sqrt[4]{2 \cdot 2 - 4} &= 0 & & & & & & \\ 3 & & \sqrt[4]{2 \cdot 3 - 4} &= \sqrt[4]{2} & & & & & \\ 4 & & \sqrt[4]{2 \cdot 4 - 4} &= \sqrt[4]{4} & & & & & \\ & \dots & & \dots & & & & \\ 10 & \sqrt[4]{2 \cdot 10 - 4} &= \sqrt[4]{16} &= 2 & & & & \end{array}$$

3. Now plot the points on a set of xy axes, and connect the points in a smooth curve. Bear in mind that the graph "stops" at the point (2,0).

