7.2A Introduction to Roots

A. Square Roots

$\sqrt{\cdot} \Longrightarrow$ means find the positive number (or zero) that multiplied by itself gives the number inside

$$
\begin{aligned}
& \sqrt{4}=2 \text {, because } 2 \cdot 2=4 \\
& \sqrt{81}=9, \text { because } 9 \cdot 9=81 \\
& \sqrt{0}=0, \text { because } 0 \cdot 0=0
\end{aligned}
$$

Note: Any number multiplied by itself is never negative! Thus, there is no real number answer to the square root of a negative number.

Thus, $\sqrt{-9}$ is not a real number.

B. Cube Roots

$\sqrt[3]{ } \Longrightarrow$ means find the number that multiplied by itself " 3 times" gives the inside number Thus, $\sqrt[3]{64}=4$, because $4 \cdot 4 \cdot 4=64 \quad\left[4^{3}=64\right]$

Note: Cube roots can accept negative numbers, and are allowed to give back negative answers!

$$
\sqrt[3]{-8}=-2, \text { because }(-2)(-2)(-2)=-8 \quad\left[(-2)^{3}=-8\right]
$$

C. Roots of Higher Order

We can consider roots of higher order, i.e. $\sqrt[4]{\cdot}, \sqrt[5]{\cdot}, \sqrt[6]{ }$.

Note that a number inside a root indicates its type. This is called the index.

To evaluate these roots, we proceed by analogy, but we have one rule for roots with even index (i.e. $\sqrt{\cdot}, \sqrt[4]{\cdot}, \sqrt[6]{\cdot}$) and we have another for roots with odd index (i.e. $\sqrt[3]{{ }^{\prime}}, \sqrt[5]{\cdot}, \sqrt[7]{\cdot}$).

1. Even Index Roots:

a. can accept only positive numbers (or zero)
so $\sqrt[6]{-64}$ is not a real number
b. the answer is always positive (or zero)

$$
\text { so } \sqrt[4]{81} \text { is } 3 \text { (never }-3)
$$

2. Odd Index Roots:

can accept any number, and the answer can be anything (positive, negative, or zero)

D. Domain of a Root Function

Odd roots can accept anything, so an odd root function has a domain of all real numbers.

Even roots can only accept positive numbers or zero, so to find the domain of an even root function, do the following:

1. Set the inside expression ≥ 0
2. Solve the inequality.

E. Examples on the Domain of a Root Function

Example 1: Find dem f, where $f(x)=\sqrt[4]{x+1}$

Solution

Even root, so set the inside $\geq 0: \quad x+1 \geq 0$

Solve the inequality: $x \geq-1$

Ans $x \geq-1$

Example 2: Find dem f, where $f(x)=\sqrt[7]{2 x-7}$

Solution

Odd root, so no restrictions . . . All real numbers!

Ans $(-\infty, \infty)$

Example 3: Find dem f, where $f(x)=\sqrt{2-3 x}$

Solution

Even root, so set the inside $\geq 0: \quad 2-3 x \geq 0$

Solve the inequality: $\quad-3 x \geq-2 \Longrightarrow x \leq \frac{2}{3}$

Ans $x \leq \frac{2}{3}$

F. Graphing Root Functions

Before graphing a root function, it is useful to determine its domain first. This will guide you as to which points you should try plotting (as we will graph by point-plotting).

Example: Graph f, where $f(x)=\sqrt[4]{2 x-4}$

Solution

1. First find the domain:

Since we have an even root, we set the inside $\geq 0: \quad 2 x-4 \geq 0$

Now solve it: $\quad 2 x-4 \geq 0 \Longrightarrow 2 x \geq 4 \Longrightarrow x \geq 2$
2. Now make an $x y$ table of points, keeping in mind that we should plug in values for x of 2 or greater only

x	y
2	$\sqrt[4]{2 \cdot 2-4}=0$
3	$\sqrt[4]{2 \cdot 3-4}=\sqrt[4]{2}$
4	$\sqrt[4]{2 \cdot 4-4}=\sqrt[4]{4}$
\cdots	\cdots
10	$\sqrt[4]{2 \cdot 10-4}=\sqrt[4]{16}=2$

3. Now plot the points on a set of $x y$ axes, and connect the points in a smooth curve. Bear in mind that the graph "stops" at the point $(2,0)$.

Ans

