7.1B Rational Exponents II

A. Factoring with Rational Exponents

If we see variables raised to fractional powers, the greatest common factor includes the variable(s) raised to the smallest fraction.

Here we revisit factoring out the GCF from Section 5.4.

Example 1: Factor the GCF out of $8 x^{\frac{7}{3}}-4 x^{\frac{11}{3}}+12 x^{\frac{5}{3}}$.

Solution

Here the smallest fractional power is $\frac{5}{3}$, so we have a GCF of $4 x^{\frac{5}{3}}$.

Thus we write $4 x^{\frac{5}{3}}(\quad)$, and fill in what's left.

To fill in the inside correctly, the exponents must add to what you had previously.

Thus we have $4 x^{\frac{5}{3}}\left(2 x^{\frac{2}{3}}-4 x^{\frac{6}{3}}+3\right)$.

Reducing fractions, we get

Ans $4 x^{\frac{5}{3}}\left(2 x^{\frac{2}{3}}-4 x^{2}+3\right)$

Example 2: Factor the GCF out of $10 x^{\frac{3}{8}}-15 x^{\frac{1}{3}}+20 x^{\frac{5}{6}}$.

Solution

Write each fraction in terms of the LCD of the exponents, to be able to identify the smallest power.

$$
\begin{aligned}
\ell c m(8,3,6) & : \\
8 & =2^{3} \\
3 & =3 \\
6 & =2 \cdot 3
\end{aligned}
$$

$$
\text { Thus } \ell_{\mathrm{cm}}(8,3,6)=2^{3} \cdot 3=24
$$

Thus we have $10 x^{\frac{9}{24}}-15 x^{\frac{8}{24}}+20 x^{\frac{20}{24}}$.

Since the smallest power is $\frac{8}{24}$, we have a GCF of $5 x^{\frac{8}{24}}$.

Thus we have $5 x^{\frac{8}{24}}\left(2 x^{\frac{1}{24}}-3+4 x^{\frac{12}{24}}\right)$.

Reducing fractions, we get

Ans $5 x^{\frac{1}{3}}\left(2 x^{\frac{1}{24}}-3+4 x^{\frac{1}{2}}\right)$

Note: A problem may ask you to factor out something other than the GCF. The technique is the same. For example, if the problem asks you to factor x out of $4 x^{\frac{6}{5}}-5 x^{2}$, then the answer would be $x\left(4 x^{\frac{1}{5}}-5 x\right)$.

B. Adding/Subtracting Rational Expressions with Rational Exponents

We revisit Section 6.2.

Here, with fractional exponents, the LCD of the "large" fractions include the variable(s) to the highest fractional power of those present in the denominators.

Important Point: In any adding/subtracting problem with fractional exponents, we first get rid of negative exponents.

Example 1: Combine $\frac{4}{x^{\frac{2}{3}} y}+\frac{2}{x^{\frac{8}{3}}}$.

Solution

$$
\mathrm{LCD}=x^{\frac{8}{3}} y
$$

Thus we have,

$$
\frac{4}{x^{\frac{2}{3}} y}+\frac{2}{x^{\frac{8}{3}}}=\frac{4 \cdot x^{\frac{6}{3}}}{x^{\frac{8}{3}} y}+\frac{2 y}{x^{\frac{8}{3}} y}
$$

Thus, we have

Ans $\frac{4 x^{2}+2 y}{x^{\frac{8}{3}} y}$

Example 2: Combine $3 x^{-\frac{2}{3}}+x^{\frac{3}{2}}-\frac{6}{x^{\frac{1}{4}}}$

Solution

Get rid of negative exponents:

$$
\frac{3}{x^{\frac{2}{3}}}+x^{\frac{3}{2}}-\frac{6}{x^{\frac{1}{4}}}
$$

Write each fractional exponent in terms of the LCD of the exponents to determine the largest fractional power in the denominators.

$$
\frac{3}{x^{\frac{8}{12}}}+\frac{x^{\frac{18}{12}}}{1}-\frac{6}{x^{\frac{3}{12}}}
$$

Here the $\mathrm{LCD}=x^{\frac{8}{12}}$ (ignore the power of x in the numerator)

Thus,

$$
\begin{aligned}
& \frac{3}{x^{\frac{8}{12}}}+\frac{x^{\frac{18}{12}}}{1}-\frac{6}{x^{\frac{3}{12}}} \\
& =\frac{3}{x^{\frac{8}{12}}}+\frac{x^{\frac{18}{12}} \cdot x^{\frac{8}{12}}}{x^{\frac{8}{12}}}-\frac{6 x^{\frac{5}{12}}}{x^{\frac{8}{12}}} \\
& =\frac{3}{x^{\frac{8}{12}}}+\frac{x^{\frac{26}{12}}}{x^{\frac{8}{12}}}-\frac{6 x^{\frac{5}{12}}}{x^{\frac{8}{12}}} \\
& =\frac{3+x^{\frac{26}{12}}-6 x^{\frac{5}{12}}}{x^{\frac{8}{12}}}
\end{aligned}
$$

Thus, upon reducing fractions, we have

Ans $\frac{3+x^{\frac{13}{6}}-6 x^{\frac{5}{12}}}{x^{\frac{2}{3}}}$

Example 3: Simplify $x^{-\frac{1}{4}}\left(5 x^{\frac{1}{3}}+x^{-\frac{1}{6}}\right)$

Solution

Multiply using the distributive property; use product rule:

$$
5 x^{\left(-\frac{1}{4}+\frac{1}{3}\right)}+x^{\left(-\frac{1}{4}-\frac{1}{6}\right)}
$$

Do fraction arithmetic

$$
\begin{aligned}
& 5 x^{\left(-\frac{3}{12}+\frac{4}{12}\right)}+x^{\left(-\frac{3}{12}-\frac{2}{12}\right)} \\
& 5 x^{\frac{1}{12}}+x^{-\frac{5}{12}}
\end{aligned}
$$

Get rid of negative exponents

$$
5 x^{\frac{1}{12}}+\frac{1}{x^{\frac{5}{12}}}
$$

Here the $\mathrm{LCD}=x^{\frac{5}{12}}$

Thus, we have

$$
\begin{aligned}
& \frac{5 x^{\frac{1}{12}} \cdot x^{\frac{5}{12}}}{x^{\frac{5}{12}}}+\frac{1}{x^{\frac{5}{12}}} \\
& \frac{5 x^{\frac{6}{12}}}{x^{\frac{5}{12}}}+\frac{1}{x^{\frac{5}{12}}} \\
& \frac{5 x^{\frac{6}{12}}+1}{x^{\frac{5}{12}}}
\end{aligned}
$$

Reducing fractions, we have

Ans $\frac{5 x^{\frac{1}{2}}+1}{x^{\frac{5}{12}}}$

