6.1A Rational Expressions and Rational Functions

A. Introduction

An algebraic fraction is called a rational expression.

For example, $\frac{3x+4}{x-2}$ and $\frac{2x}{x^2-x-12}$ are rational expressions.

A rational function is a function whose output formula f(x) is a rational expression.

Thus if $f(x) = \frac{2x-1}{x+3}$, then f is a rational function.

Note: Since we can't divide by zero, numbers that cause the denominator to be zero are not legitimate inputs.

Fact: The domain (set of allowed *x*-values) of a rational function is all real numbers **except** those that make the denominator zero.

B. Finding the Domain of a Rational Function

Set the denominator equal to zero. The "answers" are the values we have to throw away!

Example 1: Find dom f where $f(x) = \frac{3x+2}{x-5}$

Solution

Set x - 5 = 0

Then we have x = 5, which is what we need to throw away!

Ans all real numbers **except** x = 5

Example 2: Find dom f where $f(x) = \frac{2x-1}{5x^2-11x+2}$

Solution

$$\text{Set } 5x^2 - 11x + 2 = 0$$

Solve this, as before: factor!

$$5x^{2} - 11x + 2 = 0$$

$$5x^{2} - x - 10x + 2 = 0$$

$$x(5x - 1) - 2(5x - 1) = 0$$

$$(5x - 1)(x - 2) = 0$$

$$10 \sqrt{2}$$

Zero product principle:

$$5x - 1 = 0$$
 OR $x - 2 = 0$
 $x = \frac{1}{5}$ OR $x = 2$

These are the values we need to throw away!

Ans all real numbers except $x = \frac{1}{5}$ and x = 2