5.2 Dividing Polynomials

A. Dividing Polynomials By Monomials

To divide a polynomial by a monomial, we form a fraction with the monomial in the denominator. Then divide the denominator into each term.

Example 1: Divide $6 x^{3}-4 x^{2}+20 x$ by $2 x$

Solution

$$
\frac{6 x^{3}-4 x^{2}+20 x}{2 x}=\frac{6 x^{3}}{2 x}-\frac{4 x^{2}}{2 x}+\frac{20 x}{2 x}
$$

Ans $3 x^{2}-2 x+10$

Example 2: Divide $18 a^{2} b-12 a b^{2}+24 a b$ by $-3 a b$

Solution

$$
\frac{18 a^{2} b-12 a b^{2}+24 a b}{-3 a b}=\frac{18 a^{2} b}{-3 a b}+\frac{-12 a b^{2}}{-3 a b}+\frac{24 a b}{-3 a b}
$$

Ans

$$
-6 a+4 b-8
$$

To divide polynomials by multiple-term polynomials, we need to do long division. For comparison, we first review long division of numbers . . .

B. Review of Long Division

Consider $6951 \div 327$ and avoid decimals:

```
327 6951 \longleftarrow To estimate 327 into 695, we guess 3 into 6, i.e. 2
327\longdiv{6951}
654 \longleftarrow Now multiply 2 · 327
427}\begin{array}{c}{0}\\{\hline}
41 Subtract: now bring down the next term, i.e. 1
327\longdiv{6951}
        -654
            411 \longleftarrow Repeat: }327\mathrm{ into 411, guess by taking 3 into 4, i.e. }
327}\begin{array}{r}{21}\\{\hline-6951}\\{-654}
            4 1 1
            327 \longleftarrow Now multiply 1 · 327
                327}\begin{array}{r}{6951}\\{-654}
            4 1 1
            -327}\longleftarrow Now subtrac
            84\longleftarrow Must stop, if we don't want decimals
```

Ans $21 \frac{84}{327}$

C. Dividing Polynomials By Multiple Term Polynomials

We use what is called algebraic long division.

You do the same steps as in long division of numbers, with a few extra things to consider.

Important Extra Features:

1. Write the polynomials in descending order.
2. If any powers are missing, then include zero terms. These act as placeholders.
3. When subtracting polynomials, put parentheses around the polynomial. The minus sign affects everything.
4. You stop when the degree of the remainder is smaller than the divisor.
5. You need to separate the remainder with an extra $+\operatorname{sign}$ (no mixed number!)

This process is easier to do, than to describe.

Look at the following examples . . .

Example 1: Divide $3 x^{3}+4 x^{2}+x+7$ by $x^{2}+1$

Solution

$$
\begin{aligned}
& x^{2}+0 x+1 \begin{array}{l}
3 x^{3}+4 x^{2}+x+7 \\
3 x
\end{array} \\
& x^{2}+0 x+1 \begin{array}{l}
3 x^{3}+4 x^{2}+x+7 \\
\\
3 x^{3}+0 x^{2}+3 x \quad \text { Divide } x^{2} \text { into } 3 x^{3}: 3 x \\
\end{array} \\
& \text { Multiply } 3 x\left(x^{2}+0 x+1\right) \\
& \text { Now subtract. Remember parentheses. }
\end{aligned}
$$

$$
\begin{array}{rl}
x^{2}+0 x+1 & 3 x \\
& \begin{array}{l}
3 x^{3}+4 x^{2}+x+7 \\
\\
\end{array} \\
& \begin{array}{l}
\left(3 x^{3}+0 x^{2}+3 x\right) \\
\text { Bring down } 7 \\
\text { Now divide } x^{2} \text { into } 4 x^{2}: 4
\end{array}
\end{array}
$$

$$
\begin{array}{rl}
x^{2}+0 x+1 & 3 x+4 \\
& \begin{array}{l}
3 x^{3}+4 x^{2}+x+7 \\
-\frac{\left(3 x^{3}+0 x^{2}+3 x\right)}{4 x^{2}-2 x+7} \\
4 x^{2}+0 x+4
\end{array} \\
& \text { Uultiply } 4\left(x^{2}+0 x+1\right) \\
& \text { Now subtract. Remember parentheses. }
\end{array}
$$

$$
\begin{aligned}
& x ^ { 2 } + 0 x + 1 \longdiv { 3 x + 4 } \begin{array} { r }
{ 3 x ^ { 3 } + 4 x ^ { 2 } + x + 7 }
\end{array} \\
& \frac{-\left(3 x^{3}+0 x^{2}+3 x\right)}{4 x^{2}-2 x+7} \\
& \frac{-\left(4 x^{2}+0 x+4\right)}{-2 x+3} \longleftarrow \text { Stop: smaller degree than } x^{2}+1 .
\end{aligned}
$$

Ans $3 x+4+\frac{-2 x+3}{x^{2}+1}$

Example 2: Divide $8 x^{3}-x^{2}+4$ by $2 x^{2}-3$

Solution

$$
\begin{aligned}
& 2 x ^ { 2 } + 0 x - 3 \longdiv { 8 x ^ { 3 } - x ^ { 2 } + 0 x + 4 } \longleftarrow \text { Divide } 2 x^{2} \text { into } 8 x^{3}: 4 x \\
& 2 x ^ { 2 } + 0 x - 3 \longdiv { 8 x ^ { 3 } - x ^ { 2 } + 0 x + 4 } \\
& 8 x^{3}+0 x^{2}-12 x \longleftarrow \text { Multiply } 4 x\left(2 x^{2}+0 x-3\right) \\
& \text { Now subtract. Remember parentheses. }
\end{aligned}
$$

$$
\begin{array}{rl}
2 x^{2}+0 x-3 & 4 x \\
& \frac{\left(8 x^{3}-x^{2}+0 x+4\right.}{-x^{2}+12 x+4} \\
& \longleftarrow \text { Bring down } 4
\end{array}
$$

Now divide $2 x^{2}$ into $-x^{2}:-\frac{1}{2}$.

$$
\begin{aligned}
& 4 x-\frac{1}{2} \\
& 2 x ^ { 2 } + 0 x - 3 \longdiv { 8 x ^ { 3 } - x ^ { 2 } + 0 x + 4 } \\
& \frac{-\left(8 x^{3}+0 x^{2}-12 x\right)}{-x^{2}+12 x+4} \\
& -x^{2}+0 x+\frac{3}{2} \longleftarrow \text { Multiply }-\frac{1}{2}\left(2 x^{2}+0 x-3\right)
\end{aligned}
$$

Now subtract. Remember parentheses.

$$
\begin{aligned}
& 4 x-\frac{1}{2} \\
& 2 x ^ { 2 } + 0 x - 3 \longdiv { 8 x ^ { 3 } - x ^ { 2 } + 0 x + 4 } \\
& \frac{-\left(8 x^{3}+0 x^{2}-12 x\right)}{-x^{2}+12 x+4} \\
& \underline{-\left(-x^{2}+0 x+\frac{3}{2}\right)} \\
& 12 x+\frac{5}{2} \longleftarrow \text { Stop: smaller degree than } 2 x^{2}-3 .
\end{aligned}
$$

Ans $4 x-\frac{1}{2}+\frac{12 x+\frac{5}{2}}{2 x^{2}-3}$

