5.1A Polynomials: Basics

A. Definition of a Polynomial

A polynomial is a combination of terms containing numbers and variables raised to positive (or zero) whole number powers.

Examples of Polynomials

$$
\begin{aligned}
& 3 x^{5} y^{3}-4 x y^{4}+5 x^{2} y-6 \\
& 4 x^{2}+2 x^{5}-7
\end{aligned}
$$

NOT polynomials

$$
\begin{array}{ll}
2 x^{\frac{1}{2}}+4 & \text { (power is a fraction) } \\
4 x^{-1}-2 x^{3} & \text { (power is negative) }
\end{array}
$$

B. Terminology

1. Degree

a. Term Degree: sum of powers in a term

$$
\begin{array}{ll}
x^{5} y^{3} & \text { the degree is } 8 \\
x y^{2} z & \text { the degree is } 4 \\
4 & \text { the degree is } 0
\end{array}
$$

b. Polynomial Degree: maximum (not total) term degree

$$
\begin{array}{ll}
3 x^{5} y^{3}-4 x y^{4}+5 x^{2} y-6 & \text { the degree is } 8 \\
4 x^{2}+2 x^{5}-7 & \text { the degree is } 5
\end{array}
$$

2. Descending Order

We often write polynomials in order from the highest term degree to the the lowest.

For instance, we rewrite $4 x^{2}+2 x^{5}-7$ as $2 x^{5}+4 x^{2}-7$

C. Adding/Subtracting Polynomials

We combine like terms as before.

Beware: minus signs and parentheses

1. Find $\left(6 x^{2}-4 x-3\right)+\left(3 x^{2}+4\right)$

$$
9 x^{2}-4 x+1
$$

2. Find $\left(5 x^{3}+3 x-2\right)-\left(6 x^{2}-4 x+2\right)$

$$
5 x^{3}+3 x-2-6 x^{2}+4 x-2=5 x^{3}-6 x^{2}+7 x-4
$$

D. Multiplying Polynomials By Monomials

A monomial is a one-term polynomial. Use the distributive property.

Find $6 x^{3} y\left(2 x y-7 x+8 y^{2}\right)$

$$
12 x^{4} y^{2}-42 x^{4} y+48 x^{3} y^{3}
$$

E. Multiplying Binomials

A binomial is a two-term polynomial.

Method 1: Distributive Property

If the problem is to expand $(6 x-4 y)\left(x^{2}+3 y\right)$, we distribute the $(6 x-4 y)$ to the two terms of the second binomial:

$$
(6 x-4 y)\left(x^{2}+3 y\right)=(6 x-4 y) x^{2}+(6 x-4 y) 3 y
$$

Now use the distributive property again to get $6 x^{3}-4 x^{2} y+18 x y-12 y^{2}$

A shortcut to the above method is called FOIL

Method 2: FOIL

FOIL is an acronym for "First-Outer-Inner-Last"

Consider the following example:

Find $(5 x+2 y)(6 x-y)$ using FOIL

$$
\begin{aligned}
& \text { First: }(5 x)(6 x)=30 x^{2} \\
& \text { Outer: }(5 x)(-y)=-5 x y \\
& \text { Inner: }(2 y)(6 x)=12 x y \\
& \text { Last: }(2 y)(-y)=-2 y^{2}
\end{aligned}
$$

Thus we get $30 x^{2}-5 x y+12 x y-2 y^{2}=30 x^{2}+7 x y-2 y^{2}$

F. Multiplying Polynomials of Any Size

Method 1: Distributive Property

If the problem is to expand $\left(3 x^{2}-4 x+4\right)\left(x^{2}+2 x-3\right)$, we distribute the $\left(3 x^{2}-4 x+4\right)$ to the terms of the second polynomial:

$$
\begin{aligned}
& \left(3 x^{2}-4 x+4\right)\left(x^{2}+2 x-3\right) \\
& =\left(3 x^{2}-4 x+4\right) x^{2}+\left(3 x^{2}-4 x+4\right) 2 x+\left(3 x^{2}-4 x+4\right)(-3)
\end{aligned}
$$

Now use the distributive property again

$$
3 x^{4}-4 x^{3}+4 x^{2}+6 x^{3}-8 x^{2}+8 x-9 x^{2}+12 x-12
$$

Thus, after combining like terms, we get $3 x^{4}+2 x^{3}-13 x^{2}+20 x-12$

A shortcut to the above method is called the factor table

Method 2: Factor Table

You make a "tic-tac-toe" grid, and fill in the boxes with the products.

Consider $\left(2 x^{2} y-4 y^{2}+x^{2}\right)\left(3 x y+x y^{2}-4\right)$

Make factor table:

Then fill in the table with the products:

$2 x^{2} y$	$-4 y^{2}$	$+x^{2}$	
$3 x y$	$+6 x^{3} y^{2}$	$-12 x y^{3}$	$+3 x^{3} y$
$+x y^{2}$	$+2 x^{3} y^{3}$	$-4 x y^{4}$	$+x^{3} y^{2}$
-4	$-8 x^{2} y$	$+16 y^{2}$	$-4 x^{2}$

Collecting like terms:

$$
7 x^{3} y^{2}-12 x y^{3}+3 x^{3} y+2 x^{3} y^{3}-4 x y^{4}-8 x^{2} y+16 y^{2}-4 x^{2}
$$

