4.1 Systems of Linear Equations

A. Introduction

Suppose we have two lines.

We have three possibilities:

the lines intersect

the lines are parallel

the lines overlap (coincide)

Thus, if we have a system of linear equations; that is, "two line equations in x and y ", then . .

If the

1. lines intersect: we have one ordered pair that lies on both lines
2. lines are parallel: no ordered pairs lie on both lines
3. lines coincide: infinitely many ordered pairs lie on both lines

Ordered pairs (x, y) that work in both equations are called solutions to the system of equations. They represent the intersection points of the two lines. Thus a system has one solution, no solutions, or infinitely many solutions.

B. Checking Solutions to Systems

If an ordered pair is a solution, it must work in both equations.
We plug the trial point into each system.
It is a solution only if it works in both.

Example: Check to see if $(3,-1)$ is a solution to the system $\left\{\begin{array}{l}5 x+y=14 \\ x+2 y=-8\end{array}\right.$.

Solution

Plug $(3,-1)$ into each equation and see if the equation is true.

$$
\begin{aligned}
& 5(3)+(-1) \stackrel{?}{=} 14 \Longrightarrow 15-1 \stackrel{?}{=} 14 \\
& 3+2(-1) \stackrel{?}{=}-8 \Longrightarrow 3-2 \stackrel{?}{=}-8 \quad X
\end{aligned}
$$

Doesn't work in both!

Ans not a solution

C. Solving a System By Substitution

1. Pick one of the two equations (your choice).
2. Solve the equation for one of the two variables (your choice).
3. Substitute into the other equation with that variable.
4. After solving, the answer is one of the coordinates.
5. Substitute back into any equation to get the other variable answer.

Example: Solve $\left\{\begin{aligned} 3 x+8 y & =19 \\ 4 x+y & =6\end{aligned}\right.$ for (x, y) using substitution.

Solution

Pick equation 2 and solve for y (your choice):

$$
4 x+y=6 \Longrightarrow y=6-4 x
$$

Now replace y with $6-4 x$ in equation 1 :

$$
\begin{gathered}
3 x+8(6-4 x)=19 \\
3 x+48-32 x=19 \\
-29 x+48=19 \\
-29 x=-29 \\
x=1
\end{gathered}
$$

Now $y=6-4 x$, so $y=6-4(1)=6-4=2$.

Thus $(x, y)=(1,2)$.

Ans $(1,2)$

Note: We picked equation 2 and picked solving for y because the variable y didn't have a coefficient in front of it. This makes things simpler. You can pick a different equation and different variable when you start, but the work will just be more involved because of fractions. For example:

If we had picked equation 1 and solved for x :

$$
3 x+8 y=19 \Longrightarrow 3 x=19-8 y \Longrightarrow x=\frac{19-8 y}{3}
$$

Replacing x with $\frac{19-8 y}{3}$ in equation 2 :

$$
\begin{aligned}
& 4\left(\frac{19-8 y}{3}\right)+y=6 \\
& \frac{76-32 y}{3}+y=6 \\
& 3\left(\frac{76-32 y}{3}+y\right)=3 \cdot 6 \\
& 76-32 y+3 y=18 \\
& 76-29 y=18 \\
& -29 y=-58 \\
& \quad y=2 \\
& \text { Then } x=\frac{19-8 y}{3}, \text { so } x=\frac{19-8(2)}{3}=\frac{19-16}{3}=\frac{3}{3}=1 .
\end{aligned}
$$

Thus we get $(1,2)$ as before.

D. Comments on Solving Systems

1. If when solving a system, you get a false statement (like $0=3$), the system has no solutions.
2. If when solving a system, you get a true statement (like $2=2$), the system has an infinite number of solutions (namely all points on the common line).

The above situations happen when the variables "disappear" during the solution process.

E. Solving a System By Elimination

Another way to solve a system (sometimes easier) is to eliminate one of the variables.

1. Get coefficients opposite in sign of the variable you want to eliminate. Do this by multiplying each equation by a number.
2. Add equations to eliminate the variable.
3. Solve the equation to get one coordinate.
4. Substitute back into one of the equations to get the other coordinate.

Example 1: Solve the system $\left\{\begin{array}{l}x-y=4 \\ x+y=10\end{array}\right.$ for (x, y) by elimination.

Solution

Notice that by adding both equations the variable y disappears: $\quad 2 x=14$.
Then $x=7$.
Plugging into the second equation, say, we get $7+y=10$, so $y=3$.
Thus, we have $(x, y)=(7,3)$

Ans $(7,3)$

Example 2: Solve the system $\left\{\begin{array}{l}5 x+y=14 \\ x+2 y=-8\end{array}\right.$ for (x, y) by elimination.

Solution

We decide to eliminate y (arbitrary choice).
To cancel, we must multiply by constants . . .

Multiply equation 1 by -2 :

$$
\left\{\begin{aligned}
-10 x-2 y & =-28 \\
x+2 y & =-8
\end{aligned}\right.
$$

Now add the equations: $\quad-9 x=-36 \Longrightarrow x=4$.

Plug $x=4$ into equation 1 (your choice):

$$
5(4)+y=14 \Longrightarrow 20+y=14 \Longrightarrow y=-6
$$

Thus $(x, y)=(4,-6)$.

Ans $(4,-6)$

Example 3: Solve the system $\left\{\begin{array}{l}2 x+3 y=-4 \\ 3 x-2 y=7\end{array}\right.$ for (x, y) by elimination.

Solution

We decide to eliminate x (arbitrary choice).
To cancel, we must multiply by constants . . .

Multiply equation 1 by 3 and equation 2 by -2 :

$$
\left\{\begin{aligned}
6 x+9 y & =-12 \\
-6 x+4 y & =-14
\end{aligned}\right.
$$

Now add the equations: $\quad 13 y=-26 \Longrightarrow y=-2$.

Plug $y=-2$ into equation 2 (your choice):

$$
3 x-2(-2)=7 \Longrightarrow 3 x+4=7 \Longrightarrow 3 x=3 \Longrightarrow x=1
$$

Thus $(x, y)=(1,-2)$.

Ans $(1,-2)$

Example 4: Solve the system $\left\{\begin{aligned} 3 x-2 y & =8 \\ -6 x+4 y & =-16\end{aligned}\right.$ for (x, y) by elimination.

Solution

We decide to eliminate x (arbitrary choice).
To cancel, we must multiply by constants . . .

Multiply equation 1 by 2 :

$$
\left\{\begin{aligned}
6 x-4 y & =16 \\
-6 x+4 y & =-16
\end{aligned}\right.
$$

Now add the equations: $0=0$

The variables disappeared and we got a true statement!

Thus we have infinitely many solutions.

Ans infinitely many solutions! all points on the line $3 x-2 y=8$

F. Closing Comments

1. If a system of equations has no solution, we sometimes say that the system is inconsistent.
2. If a system of equations has infinitely many solutions, we say that the equations are dependent.
3. Another solution method is called solution by graphing.

Here each line is graphed, and the intersection point is determined by picture. However, this is usually difficult to get an accurate answer.

