3.6 Graphing Functions

A. Graphing Functions

To graph a function, we make a table of (x, y) pairs. Then plot points and connect.

Note: Only graphs of first powers are "straight".

B. Examples

Example 1: Graph ξ , where $\xi(x) = x^2 + 1$

Solution

x	$y = \xi(x)$
-3	$(-3)^2 + 1 = 9 + 1 = 10$
-2°	$(-2)^2 + 1 = 4 + 1 = 5$
-1	$(-1)^2 + 1 = 1 + 1 = 2$
0	$0^2 + 1 = 0 + 1 = 1$
1	$1^2 + 1 = 1 + 1 = 2$
2	$2^2 + 1 = 4 + 1 = 5$
3	$3^2 + 1 = 9 + 1 = 10$

Plot the points:

$$(-3, 10), (-2, 5), (-1, 2), (0, 1), (1, 2), (2, 5), (3, 10)$$

Then connect the dots in a smooth curve:

Example 2: Graph $_{\mathcal{G}}$, where $_{\mathcal{G}}(x) = -|x+2|$

Solution

x	y = f(x)
-3	- (-3) + 2 = - -1 = -(1) = -1
-2	- (-2) + 2 = - 0 = -(0) = 0
-1	- (-1) + 2 = - 1 = -1
0	- 0+2 = - 2 = -2
1	- 1+2 = - 3 = -3
2	- 2+2 = - 4 = -4
3	- 3+2 = - 5 = -5

Plot the points:

$$(-3, -1), (-2, 0), (-1, -1), (0, -2), (1, -3), (2, -4), (3, -5)$$

Then connect the dots:

C. Reciprocal Function

A special function that takes some care to graph is the function f, given by $f(x) = \frac{c}{x}$.

i.e.
$$f(x) = \frac{3}{x}$$
, $f(x) = -\frac{2}{x}$, $f(x) = \frac{7}{x}$, etc.

This is called the **reciprocal function**.

Features:

- 1. The graph comes in "two pieces".
- 2. The graph does not cross the x axis or y axis anywhere.
- 3. The function is not defined for x = 0.
- 4. The curve "approaches" but does not touch either axis.

Example: Graph f, where $f(x) = \frac{3}{x}$

Solution

$$\begin{array}{c|c|c} x & y = \xi(x) \\ \hline -3 & \frac{3}{-3} = -1 \\ -2 & \frac{3}{-2} = -\frac{3}{2} \\ -1 & \frac{3}{-1} = -3 \\ -\frac{1}{2} & \frac{3}{-\frac{1}{2}} = -6 \\ 0 & \text{undefined} \\ \hline \frac{1}{2} & \frac{3}{\frac{1}{2}} = 6 \\ 1 & \frac{3}{\frac{1}{2}} = 3 \\ 2 & \frac{3}{2} = \frac{3}{2} \\ 3 & \frac{3}{3} = 1 \end{array}$$

Plot the points:

$$(-3,-1), \left(-2,-\frac{3}{2}\right), (-1,-3), \left(-\frac{1}{2},6\right), \left(\frac{1}{2},6\right), (1,3), \left(2,\frac{3}{2}\right), (3,1)$$

Then connect the dots in smooth curve pieces:

