3.6 Graphing Functions

A. Graphing Functions

To graph a function, we make a table of (x, y) pairs.
Then plot points and connect.

Note: Only graphs of first powers are "straight".

B. Examples

Example 1: \quad Graph f, where $f(x)=x^{2}+1$

Solution

x	$y=f(x)$
-3	$(-3)^{2}+1=9+1=10$
-2	$(-2)^{2}+1=4+1=5$
-1	$(-1)^{2}+1=1+1=2$
0	$0^{2}+1=0+1=1$
1	$1^{2}+1=1+1=2$
2	$2^{2}+1=4+1=5$
3	$3^{2}+1=9+1=10$

Plot the points:

$$
(-3,10),(-2,5),(-1,2),(0,1),(1,2),(2,5),(3,10)
$$

Then connect the dots in a smooth curve:

Example 2: Graph $_{\mathfrak{g}}$, where ${ }_{g}(x)=-|x+2|$

Solution

x	$y=f(x)$
-3	$-\|(-3)+2\|=-\|-1\|=-(1)=-1$
-2	$-\|(-2)+2\|=-\|0\|=-(0)=0$
-1	$-\|(-1)+2\|=-\|1\|=-1$
0	$-\|0+2\|=-\|2\|=-2$
1	$-\|1+2\|=-\|3\|=-3$
2	$-\|2+2\|=-\|4\|=-4$
3	$-\|3+2\|=-\|5\|=-5$

Plot the points:

$$
(-3,-1),(-2,0),(-1,-1),(0,-2),(1,-3),(2,-4),(3,-5)
$$

Then connect the dots:

C. Reciprocal Function

A special function that takes some care to graph is
the function f, given by $f(x)=\frac{c}{x}$.

$$
\text { i.e. } \quad f(x)=\frac{3}{x}, \quad f(x)=-\frac{2}{x}, \quad f(x)=\frac{7}{x}, \quad \text { etc. }
$$

This is called the reciprocal function.

Features:

1. The graph comes in "two pieces".
2. The graph does not cross the x axis or y axis anywhere.
3. The function is not defined for $x=0$.
4. The curve "approaches" but does not touch either axis.

Example: Graph f, where $f(x)=\frac{3}{x}$

Solution

x	$y=f(x)$
-3	$\frac{3}{-3}=-1$
-2	$\frac{3}{-2}=-\frac{3}{2}$
-1	$\frac{3}{-1}=-3$
$-\frac{1}{2}$	$\frac{3}{-\frac{1}{2}}=-6$
0	undefined
$\frac{1}{2}$	$\frac{3}{\frac{1}{2}}=6$
1	$\frac{3}{1}=3$
2	$\frac{3}{2}=\frac{3}{2}$
3	$\frac{3}{3}=1$

Plot the points:

$$
\begin{equation*}
(-3,-1),\left(-2,-\frac{3}{2}\right),(-1,-3),\left(-\frac{1}{2}, 6\right),\left(\frac{1}{2}, 6\right),(1,3),\left(2, \frac{3}{2}\right) \tag{3,1}
\end{equation*}
$$

Then connect the dots in smooth curve pieces:

