3.3 Equations of Lines

A. Point-Slope Formula

1. Formula: $y-y_{1}=m\left(x-x_{1}\right)$
2. Justification:

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{x-x_{1}}$

Multiplying by $x-x_{1}$ yields the equation.

B. Slope-Intercept Formula

1. Formula: $y=m x+b$

Here " b " is the y-intercept.
2. Justification:
$(0, b)$ lies on the line, so plug $(0, b)$ in for $\left(x_{1}, y_{1}\right)$ in the point-slope formula:

$$
y-b=m(x-0) \Longrightarrow y=m x+b
$$

C. Standard Form

1. Formula: $A x+B y=C$
2. The formula includes horizontal and vertical lines.
3. Solving the formula for y :

$$
\begin{aligned}
B y & =-A x+C \\
y & =\frac{-A x+C}{B} \quad \text { if } B \neq 0 \quad[B=0 \text { vertical line }] \\
y & =\left(-\frac{A}{B}\right) x+\left(\frac{C}{B}\right)
\end{aligned}
$$

4. Slope: $m=-\frac{A}{B}$

D. General Strategy for Finding the Equation of a Line

1. Find the slope of the given line.
a. If the line is horizontal, $m=0$
b. If the line is vertical, m is undefined.
c. Given two points, use $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
d. Given a line in slope-intercept form, i.e. $y=m x+b$: read off m
e. Given a line in standard form, i.e. $A x+B y=C: \quad$ use $m=-\frac{A}{B}$
2. Find the slope of the line you want.
a. If you want a parallel line, then
I. parallel to a horizontal line is a horizontal line! Answer to problem is $y=b$. YOU'RE DONE!
II. parallel to a vertical line is a vertical line! Answer to problem is $x=a$. YOU'RE DONE!
III. otherwise take the same slope from step 1
b. If you want a perpendicular line, then
I. perpendicular to a horizontal line is a vertical line!

Answer to problem is $x=a$. YOU'RE DONE!
II. perpendicular to a vertical line is a horizontal line!

Answer to problem is $y=b$. YOU'RE DONE!
III. otherwise take the negative reciprocal of the slope from step 1
3. Use the new slope and the chosen point in the point-slope formula.
4. To put the answer in:
a. Point-slope: YOU'RE DONE!
b. Slope-Intercept: Solve the equation for y and simplify.
c. Standard Form:
I. First get in slope-intercept form
II. Get all the x 's and y 's on one side and simplify.
III. (OPTIONAL) Clear fractions, making x coefficient positive.

E. Examples

Example 1: Find the equation of the line with slope -2 passing through $(-3,4)$. Write the equation in standard form.

Solution

Point-Slope:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=-2(x-(-3)) \\
& y-4=-2(x+3)
\end{aligned}
$$

Now put in standard form:

$$
\begin{aligned}
& y-4=-2 x-6 \\
& 2 x+y-4=-6
\end{aligned}
$$

Ans $2 x+y=-2$

Example 2: Find the equation of the line passing through $(-3,2)$ and $(1,4)$. Write the equation in slope-intercept form.

Solution

Find slope:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-2}{1-(-3)}=\frac{2}{4}=\frac{1}{2}
$$

Point-slope:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=\frac{1}{2}(x-(-3)) \quad \text { (also works if you use (1,4)) } \\
& y-2=\frac{1}{2}(x+3)
\end{aligned}
$$

Now put in slope-intercept form: solve for y

$$
\begin{aligned}
& y-2=\frac{1}{2} x+\frac{3}{2} \\
& y=\frac{1}{2} x+\frac{3}{2}+2
\end{aligned}
$$

Ans $y=\frac{1}{2} x+\frac{7}{2}$

Example 3: Find the equation of the line passing through $(-1,4)$ and $(-1,7)$

Solution

Find slope:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-4}{-1-(-1)}=\frac{3}{-1+1}=\frac{3}{0} \quad \text { undefined }
$$

vertical line! $x=a$!

Ans $x=-1$

Example 4: Find the equation of the line passing through $(1,-3)$
and perpendicular to $3 x-2 y=5$. Write your answer in point-slope form.

Solution

Find slope:

$$
\begin{gathered}
m=-\frac{A}{B}=-\frac{3}{-2}=\frac{3}{2} \\
\text { Perpendicular slope: } m_{\perp}=-\frac{2}{3}
\end{gathered}
$$

Point-Slope:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-3)=-\frac{2}{3}(x-1)
\end{aligned}
$$

Ans $y+3=-\frac{2}{3}(x-1)$

Example 5: Find the equation of the line passing through $(-2,4)$ that is perpendicular to the line passing through $(3,-4)$ and $(3,7)$

Solution

Find slope:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-(-4)}{3-3}=\frac{11}{0} \quad \text { undefined }
$$

vertical line! perpendicular to a vertical line is a horizontal line
A horizontal line has equation $y=b$
Ans $y=4$

