3.2 Slope

A. Slope

The slope of a line measures "how much it is tilting".

By definition, slope $=\frac{\text { rise }}{\text { run }}$.

B. Finding Slope

1. Pick two points on a line.

Pick one as the first point and the other as the second point.
2. Going from the first point to the second, record the vertical change-the rise, and record the horizontal change-the run.

Note: These changes can be negative.
3. Use slope $=\frac{\text { rise }}{\text { run }}$.

Note: It doesn't matter which point you use for the first point.

C. Example

Find the slope of the given line:

Solution

Picking the top point as the first point:

Going to the bottom point:

$$
\begin{aligned}
& \text { rise }=-3 \\
& \text { run }=1 \\
& \text { slope }=\frac{\text { rise }}{\text { run }}=\frac{-3}{1}=-3
\end{aligned}
$$

Note that you would get the same answer
if you chose the bottom point as the first point:

Going to the top point:

$$
\begin{aligned}
& \text { rise }=3 \\
& \text { run }=-1 \\
& \text { slope }=\frac{\text { rise }}{\text { run }}=\frac{3}{-1}=-3
\end{aligned}
$$

D. Comments on Slope

1. As in the previous example, slope can be negative!
2. Slope of a horizontal line $=0 \quad\left[\frac{\text { rise }}{\text { run }}=\frac{0}{\text { run }}=0\right]$

Slope of a vertical line is undefined $\quad\left[\frac{\text { rise }}{\text { run }}=\frac{\text { rise }}{0}\right.$: undefined $]$
3. The slope of a line is given the symbol m.
4. General idea of the slope of a line:

E. Slope Formula-Intro

rise $=d-b$
run $=c-a$

Thus, $m=\frac{\text { rise }}{\text { run }}=\frac{d-b}{c-a}$

F. Subscripts

Four letters, as used in the previous formula, is confusing!

To help memory, we call the x and y coordinates of a point as " x " and " y ", but we need to distinguish which point we mean.

Introduce subscripts (small numbers below):

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \quad \text { first point } \\
& \left(x_{2}, y_{2}\right) \text { second point }
\end{aligned}
$$

The subscripts are only labels and don't have any "value".

G. Slope Formula

$$
\begin{aligned}
& \text { rise }=y_{2}-y_{1} \\
& \text { run }=x_{2}-x_{1}
\end{aligned}
$$

Thus, $m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. This is our "two-point formula" for slope:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

H. Example

Find the slope of the line passing through $(-1,3)$ and $(4,-2)$

Solution

It doesn't matter which point we pick for the first point.

Call $\left(x_{1}, y_{1}\right)=(-1,3)$ and call $\left(x_{2}, y_{2}\right)=(4,-2)$.

Now use the "two-point formula":

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{(-2)-(3)}{(4)-(-1)}=\frac{-5}{5}=-1
$$

I. Parallel Lines

1. Horizontal lines are parallel to each other.
2. Vertical lines are parallel to each other.
3. All other angled lines have the same slope: $\quad m_{1}=m_{2}$
4. Given a line with slope m, we call the parallel slope: $m_{| |}$(same number!)

J. Perpendicular Lines

1. Horizontal and vertical lines are perpendicular to each other.
2. All other angled lines are perpendicular if and only if their slopes are negative (or opposite) reciprocals.

$$
m_{2}=-\frac{1}{m_{1}} \quad \text { and } \quad m_{1}=-\frac{1}{m_{2}}
$$

3. Given a line with slope m, we call the perpendicular slope: m_{\perp}.
4. Examples: What is the slope of the line perpendicular to a line with slope
a. 4 ?
b. $-\frac{2}{3}$?
c. undefined?

Solution

a. $m_{\perp}=-\frac{1}{4}$
b. $-\frac{1}{-\frac{2}{3}} \Longrightarrow m_{\perp}=\frac{3}{2}$
c. perpendicular to a vertical line is a horizontal line $\Longrightarrow m_{\perp}=0$

