2.8 Absolute Value Inequalities

A. Strategy

Recall: Absolute Value means distance from the origin

- 1. Draw a number line and mark the locations that have the required distance. Remember distance is always a "positive" idea.
- 2. Use the shaded number line you just drew to rewrite the original problem without absolute value signs. You will typically get one inequality for each endpoint.
- 3. Solve the resulting problem, usually a compound inequality.

Note: Most of the time, the problem breaks into two inequalities joined by AND/OR

Guidelines:

- 1. AND/OR choice:
 - a. $<, \leq:$ AND
 - b. >, \geq : OR
- 2. Distance picture
 - a. <, <: "sandwich" **IF number on opposite side is positive!!**
 - b. $>, \geq$: "two pieces going out" **IF number on opp. side is positive!!**

B. Examples

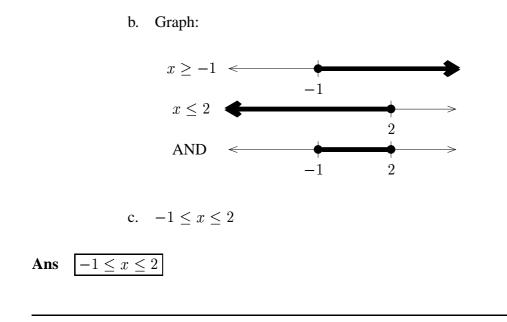
Example 1: Solve $|2x - 1| \le 3$ for x

Solution

1. Draw the distance picture on the number line (want distance ≤ 3)

Note: When drawing the distance picture, distance doesn't "notice" the negative signs.

2. From the picture, we see that we have:


Left endpoint: $2x - 1 \ge -3$

Right endpoint: $2x - 1 \le 3$

Both must be true to be inside the region: need AND

3. Now solve $2x - 1 \ge -3$ AND $2x - 1 \le 3$

a.	$2x \ge -2$	AND	$2x \le 4$
	$\frac{2x}{2} < \frac{-2}{2}$	AND	$\frac{2x}{2} \le \frac{4}{2}$
	$x \ge -1$	AND	$x \leq 2$

Example 2: Solve |4 - x| > 2 for x

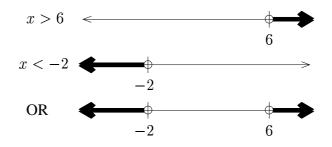
Solution

1. Draw the distance picture on the number line (want distance > 2)

Note: When drawing the distance picture, distance doesn't "notice" the negative signs.

2. From the picture, we see that we have:

Left endpoint: 4 - x < -2


Right endpoint:
$$4 - x > 2$$

To be in the region, only one must be true: need **OR**

3. Now solve 4 - x < -2 OR 4 - x > 2

a.	-x < -6	OR	-x > -2
	$\frac{-x}{-1} > \frac{-6}{-1}$	OR	$\frac{-x}{-1} < \frac{-2}{2}$
	x > 6	OR	x < -2

b. Graph:

c. can not be simplified!

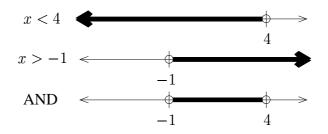
Ans x > 6 OR x < -2

Example 3: Solve |3 - 2x| < 5 for x

Solution

1. Draw the distance picture on the number line (want distance < 5)

2. From the picture, we see that we have:

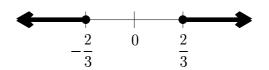

Left endpoint: 3 - 2x > -5**Right endpoint:** 3 - 2x < 5

Both must be true to be inside the region: need AND

3. Now solve 3 - 2x > -5 AND 3 - 2x < 5

a.	-2x > -8	AND	-2x < 2
	$\frac{-2x}{-2} < \frac{-8}{-2}$	AND	$\frac{-2x}{-2} > \frac{2}{-2}$
	x < 4	AND	x > -1

b. Graph:

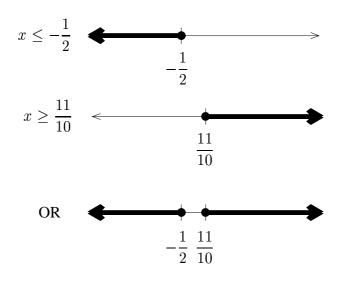

c.
$$-1 < x < 4$$

Ans -1 < x < 4

Example 4: Solve
$$\left|\frac{5x}{6} - \frac{1}{4}\right| \ge \frac{2}{3}$$
 for x

Solution

1. Draw the distance picture on the number line (want distance $\geq \frac{2}{3}$)


2. From the picture, we see that we have:

Left endpoint: $\frac{5x}{6} - \frac{1}{4} \le -\frac{2}{3}$ Right endpoint: $\frac{5x}{6} - \frac{1}{4} \ge \frac{2}{3}$

To be in the region, only one must be true: need **OR**

3. Now solve
$$\frac{5x}{6} - \frac{1}{4} \le -\frac{2}{3}$$
 OR $\frac{5x}{6} - \frac{1}{4} \ge \frac{2}{3}$
a. $12\left(\frac{5x}{6} - \frac{1}{4}\right) \le 12\left(-\frac{2}{3}\right)$ OR $12\left(\frac{5x}{6} - \frac{1}{4}\right) \ge 12\left(\frac{2}{3}\right)$
 $10x - 3 \le -8$ OR $10x - 3 \ge 8$
 $10x \le -5$ OR $10x \ge 11$
 $\frac{10x}{10} \le \frac{-5}{10}$ OR $\frac{10x}{10} \ge \frac{11}{10}$
 $x \le -\frac{1}{2}$ OR $x \ge \frac{11}{10}$

b. Graph:

c. can not be simplified!

Ans
$$x \le -\frac{1}{2}$$
 OR $x \ge \frac{11}{10}$

C. Comments

- Always draw the number line and make the "distance" picture. Don't just use some "rule". In all of the above problems, the right hand side was **positive**. If the right hand side is zero or negative, the solution strategy will be different **but still based on the distance idea**.
- 2. As per comment #1 above, think about how to solve:

a.
$$|6x - 1| > -3$$

b. $|2 - 5x| \le 0$
c. $|7 - x| \le -5$
d. $|2x + 3| > 0$
etc.