### 2.5 More Problem Solving

## A. Two Similar Unknowns

When you have two unknowns that both add to a number, say 100 , we can write them as $x$ and $100-x$

Reason: For two unknowns $x$ and $y$, if $x+y=100$, then $y=100-x$

## B. Mixture Problems

Whenever we have two types of items that we put together to form a third, we have a mixture problem. The general equation for a mixture problem is:
"stuff1+stuff2 =total stuff"

Often in mixture problems we will need to make use of the "two similar unknowns" principle.

## C. Examples of Mixture Problems

Example 1: How much $70 \%$ solution and $40 \%$ solution need to be mixed to get 50 gallons of $50 \%$ solution?

## Solution

Use the "stuff1+stuff2 =total stuff" equation:
$70 \%$ solution of unknown1 amount $+40 \%$ solution of unknown2 amount
$=50 \%$ solution of 50 gallons
2. Let $x=$ gallons of $70 \%$ solution

By the two similar unknowns principle, $50-x=$ gallons of $40 \%$ solution.
$70 \%$ of $x+40 \%$ of $(50-x)=50 \%$ of 50
3. $.70 x+.40(50-x)=.50(50)$
4. $.70 x+20-.40 x=25 \Rightarrow .30 x=5 \Rightarrow x=\frac{5}{.30} \approx 16.7$
5. Answer the question!

We've found the gallons of $70 \%$ solution. Now $50-x \approx 50-16.7=33.3$ is the number of gallons of $40 \%$ solution

Ans $\quad 16.7$ gallons of $70 \%$ solution and 33.3 gallons of $40 \%$ solution

Example 2: How much candy costing $\$ 5.29$ per pound should be mixed with 5 pounds of candy costing $\$ 3.69$ per pound to yield a mixture worth $\$ 4.60$ per pound?

## Solution

Use the "stuff1+stuff2 =total stuff" equation:
$\$ 5.29$ per pound of unknown amount $+\$ 3.69$ per pound of 5 pounds $=\$ 4.60$ per pound of total mixture
2. Let $x=$ amount of $\$ 5.29$ per pound candy

Adding 5 pounds to $x$ yields a total mixture of $x+5$ pounds.
5.29 of $x+3.69$ of $5=4.60$ of $(x+5)$
3. $5.29 x+3.69(5)=4.60(x+5)$

$$
\text { 4. } 5.29 x+18.45=4.60 x+23 \Rightarrow .69 x=4.55 \Rightarrow x=\frac{4.55}{.69} \approx 6.59
$$

Ans

## D. Distance/Rate/Time Problems

Any problem involving motion is called a distance/rate/time problem. The fundamental relationship between distance/rate/time is $d=r t$.

The usual strategy for solving these problems is to ask the question: What do you know about distance at the end of the problem?

## E. An Example

Two cross-country skiers start skiing at the same time on the same trail going in the same direction. The more experienced skier averages 6 miles per hour, while the beginning skier averages 2 miles per hour. After how many hours of skiing will the two skiers be 10 miles apart?

## Solution

1. Experienced skier $=6 \mathrm{mph}$

Beginning skier $=2 \mathrm{mph}$

End of the problem: $d_{\text {experienced }}-d_{\text {beginning }}=10$
2. Let $t=$ number of hours skiing

Then using $d=r t, d_{\text {experienced }}=6 t$ and $d_{\text {beginning }}=2 t$
3. $6 t-2 t=10$
4. $4 t=10 \Rightarrow t=\frac{10}{4}=2.5$

Ans 2.5 hours

