2.3 Absolute Value Equations

A. Absolute Value

Recall that $|\cdot|$ means distance from the origin.

B. Strategy

1. Draw a number line and mark the location(s) that have the required distance.
2. Rewrite the problem without absolute value signs using the marked locations and solve.

Note: Most of the time, the problem breaks into two equations.

C. Examples

Example 1: \quad Solve $|2 x+3|=5$ for x

Solution

1. Distance from the origin $=5$

2. Now write the new equations:

$$
\begin{aligned}
& 2 x+3=-5 \quad \text { OR } \quad 2 x+3=5 \\
& 2 x+3 \underline{-3}=-5 \underline{-3} \quad \text { OR } \quad 2 x+3 \underline{-3}=5 \underline{-3}
\end{aligned}
$$

$$
\begin{array}{lll}
2 x=-8 & \text { OR } & 2 x=2 \\
\frac{2 x}{2}=\frac{-8}{2} & \text { OR } & \frac{2 x}{2}=\frac{2}{2}
\end{array}
$$

Ans $\quad x=-4 \quad$ OR $\quad x=1$

Example 2: \quad Solve $|7-x|=3$ for x

Solution

1. Distance from the origin $=3$

2. Now write the new equations:

$$
\begin{aligned}
& 7-x=-3 \quad \text { OR } \quad 7-x=3 \\
& 7-x \underline{-7}=-3 \quad \underline{-7} \quad \text { OR } \quad 7-x \underline{-7}=3 \underline{-7} \\
& -x=-10 \quad \text { OR } \quad-x=-4 \\
& \frac{-x}{-1}=\frac{-10}{-1} \quad \text { OR } \quad \frac{-x}{-1}=\frac{-4}{-1}
\end{aligned}
$$

Ans $\quad x=10$ OR $\quad x=4$

Example 3: Solve $\left|\frac{5 x}{3}-\frac{7}{2}\right|=1$ for x

Solution

1. Distance from the origin $=1$

2. Now write the new equations:

$$
\begin{aligned}
& \frac{5 x}{3}-\frac{7}{2}=-1 \quad \text { OR } \quad \frac{5 x}{3}-\frac{7}{2}=1 \\
& 6\left(\frac{5 x}{3}-\frac{7}{2}\right)=6(-1) \quad \text { OR } \quad 6\left(\frac{5 x}{3}-\frac{7}{2}\right)=6(1) \\
& 10 x-21=-6 \quad \text { OR } \quad 10 x-21=6 \\
& 10 x-21 \underline{+21}=-6 \underline{+21} \quad \text { OR } \quad 10 x-21 \underline{+21}=6 \underline{+21} \\
& 10 x=15 \quad \text { OR } \quad 10 x=27 \\
& \frac{10 x}{10}=\frac{15}{10} \quad \text { OR } \quad \frac{10 x}{10}=\frac{27}{10}
\end{aligned}
$$

Ans $\quad x=\frac{3}{2} \quad$ OR $\quad x=\frac{27}{10}$

D. Comments

1. To check your solution, plug each number back in to the equation. Both numbers must work for a correct solution.
2. Always draw the number line and use "distance"; don't just use some " $+/-$ " rule, which fails if the right hand side is negative.

Think about how to do these:

1. Solve $|2 x-3|=-4$ for x
2. Solve $|2 x-3|=0$ for x
