2.2 Literal Equations

A. Discussion

These are equations with many variables in them. The goal is to solve for one of them. To do this, treat all other variables as if they were numbers.

Strategy:

Move everything with the desired variable to one side and move everything else to the other side. Use the same methods as before.

B. Examples

Example 1: Solve 6xy - 3y = 2xy + 2 for x

Solution

Identify the terms with *x*:

$$6xy - 3y = 2xy + 2$$

Move the terms with x to the same side: move 2xy to the left

6xy - 3y - 2xy = 2xy + 2 - 2xy4xy - 3y = 2

Identify the terms without *x*:

$$4xy - 3y = 2$$

Move the terms without x to the same side: move -3y to the right

$$4xy - 3y + 3y = 2 + 3y$$

$$4xy = 2 + 3y$$

Now divide by 4y to get x by itself: $\frac{4xy}{4y} = \frac{2+3y}{4y}$

Ans $x = \frac{2+3y}{4y}$

Example 2: Solve $4 - \frac{a-2}{6} = \frac{3b}{2} - a$ for a

Solution

Clear fractions: Multiply by LCD= 6

 $6\left[4 - \frac{a-2}{6}\right] = 6\left[\frac{3b}{2} - a\right]$

$$24 - (a - 2) = 9b - 6a$$

Clear parentheses: 24 - a + 2 = 9b - 6a

Thus we have 26 - a = 9b - 6a

Now identify the terms containing *a*:

$$26 \underline{-a} = 9b \underline{-6a}$$

Now get the terms with a in them to the same side: move them to the left

$$26 - a + 6a = 9b - 6a + 6a$$

$$26 + 5a = 9b$$

Now identify the terms without *a*:

$$\underline{26} + 5a = 9b$$

Now get the terms without a to the other side: move them to the right

$$26 + 5a - 26 = 9b - 26$$

5a = 9b - 26

Divide by 5 to get a by itself: $\frac{5a}{5} = \frac{9b-26}{5}$

Ans $a = \frac{9b-26}{5}$