2.1C Special Cases

A. Discussion

Sometimes when solving an equation, " x " disappears!

If you get something false, like $0=3,-1=4$, etc., then the equation has no solutions. This is sometimes written as \emptyset.

If you get something true, like $0=0,5=5$, etc., then the equation is always true.
Every real number works. The solution is "all real numbers".
This is sometimes written as $(-\infty, \infty)$.

B. Examples

Example 1: Solve $2 x-4=2(3+x)$ for x

Solution

1. Simplify:

Clear parentheses: $2 x-4=6-2 x$

No fractions to clear

No like terms to combine
2. Isolate x :

$$
\begin{aligned}
& 2 x+4 \underline{-2 x}=6+2 x-2 x \\
& -4=6
\end{aligned}
$$

This is a false statement. Thus the equation has no solutions.

Ans \emptyset

Example 2: Solve $5 x-3(x-2)=2(x+3)$ for x

Solution

1. Simplify:

Clear parentheses: $5 x-3 x+6=2 x+6$

Collect like terms: $2 x+6=2 x+6$
2. Isolate x :

$$
\begin{aligned}
& 2 x+6 \underline{-2 x}=2 x+6 \underline{-2 x} \\
& 6=6
\end{aligned}
$$

This is a true statement. Thus the solution is all real numbers.

Ans $(-\infty, \infty)$

Note: An equation with "all real numbers" as a solution is an identity. You can check an identity by plugging in any random number you want into the original equation. It has to be true for all such random picks.

For instance, in Example 2, the number 3 should work. Let's check it:

$$
\begin{aligned}
& 5(3)-3(3-2) \stackrel{?}{=} 2(3+3) \\
& 15-3(1) \stackrel{?}{=} 2 \cdot 6 \\
& 15-3 \stackrel{?}{=} 12
\end{aligned}
$$

It checks!

