2.1A Equations and Checking

A. Equations vs. Non-equations

We have to first make sure we recognize the difference between an equation and a nonequation.

An equation has an equals $\boldsymbol{s i g n}=$ in it.

An equation has us solve for an unknown (say x).

A non-equation asks us to do something, but not find the value of the unknown.

Equations

Non-equations

1. $x^{2}+5 x+6=0$
2. Factor $x^{2}+5 x+6$
3. $\frac{5}{x-3}+\frac{2}{x-1}=7$
4. Combine $\frac{5}{x-3}+\frac{2}{x-1}$
5. $2(x-3)=2 x-6$
6. Expand $2(x-3)$

An equals sign changes what we do.

Make sure you do the right thing.

If a problem does not have an equals sign $=$ in it, do not put one in. You change the problem.

B. Checking Solutions

A solution to an equation is its "answer".

We can check to see if it is correct, by plugging it into the equation and seeing if it is correct.

Note: When we plug the number in, we don't know if the equation is true, so we indicate this by writing $\stackrel{?}{=}$ at each step.

Example 1: Is 3 a solution to $5 x-6=2 x+1$?

Solution

Plug it in:

$$
\begin{aligned}
& 5(3)-6 \stackrel{?}{=} 2(3)+1 \\
& 15-6 \stackrel{?}{=} 6+1 \\
& 9 \stackrel{?}{=} 7
\end{aligned}
$$

Ans NO

Example 2: Is 2 a solution to $4-3 x=2 x-6$?

Solution

Plug it in:

$$
\begin{aligned}
& 4-3(2) \stackrel{?}{=} 2(2)-6 \\
& 4-6 \stackrel{?}{=} 4-6 \\
& -2 \stackrel{?}{=}-2
\end{aligned}
$$

Ans YES

Equations that are true for one, or just a few, values are called conditional. Equations that are true no matter what value you put in are called identities.

