
1.5A Terms and Expressions

A. Definitions

- 1. **Terms**: things separated by plus/minus signs
- 2. Expressions: collection of terms; doesn't have an equals sign

3. **Coefficient**: number in front of term: $3x^2y$

Note: "no number" in front means the coefficient is 1

B. Important Viewpoint

Suppose we have an expression like $3x^2 - xy + 4xy^2 - 4y^2$.

Think of the plus/minus signs as "belonging" to the next term.

Thus, we think of the expression as being formed by a combination of

"
$$3x^2$$
" and " $-xy$ " and " $4xy^2$ " and " $-4y^2$ "

C. Comments on Order

1. The variables in a term can be written in any order (by commutativity).

Thus x^2y and yx^2 are the same.

2. The terms in an expression can be written in any order (by commutativity).

Thus $3x^2 - y$ and $-y + 3x^2$ are the same.

D. Collecting Like Terms

Method:

- 1. Alphabetize each term
- 2. Add/subtract the like terms (terms that have the same form)

Example 1: Simplify $3a^2b - 4b^2a + 2ba^2 - 5ab^2$

Solution

First alphabetize: $3a^2b - 4ab^2 + 2a^2b - 5ab^2$

Identify like terms to combine: $\underline{3a^2b} = \underline{-4ab^2} + 2a^2b = \underline{-5ab^2}$

Ans $5a^2b - 9ab^2$

Example 2: Simplify $6ab - 4cb - ab^2 - ba^2c + 3bc + ab^2c - 2cba^2$

Solution

First alphabetize:
$$6ab - 4bc - ab^2 - a^2bc + 3bc + ab^2c - 2a^2bc$$

Identify like terms to combine:
$$6ab \underline{-4bc} - ab^2 \underline{\underline{-a^2bc}} \underline{+3bc} + ab^2c \underline{\underline{-2a^2bc}}$$

Ans
$$6ab - bc - ab^2 - 3a^2bc + ab^2c$$