1.4C Scientific Notation

A. Scientific Notation

Extremely large or extremely small numbers are sometimes written in scientific notation.

Scientific Notation looks like \# $\times 10^{\text {power }}$, where \# is a number between 1 and 10 .

B. Converting to Scientific Notation

Move the decimal point to get a number between 1 and 10 .

If you move the decimal to the left, the power is positive.

If you move the decimal to the right, the power is negative

Examples:

1. Convert $14,730,000$ to scientific notation

The decimal point sits to the right of the last zero, so you need to move it 7 times to the left to get 1.473.

Thus we have 1.473×10^{7}
2. Convert 891,500 to scientific notation

The decimal point is to the right of the last zero, so you need to move it 5 times to the left to get 8.915

Thus we have 8.915×10^{5}
3. Convert . 003436 to scientific notation

Move the decimal point 3 times to the right to get 3.436. Since we move it to the right, the power is negative.

Thus we have 3.436×10^{-3}

C. Converting Back From Scientific Notation

Here we convert back, so we undo the steps above.

If the power is positive, you move the decimal to the right.

If the power is negative, you move the decimal to the left.

Examples:

1. Convert 6.15×10^{4} back to a regular number

Positive power, so move to the right (need to add 2 zeros!)

Thus we have 61500
2. Convert 8.23×10^{-3} back to a regular number

Negative power, so move to the left (need to add 2 zeros!)

Thus we have .00823

To avoid getting the rules mixed up, just remember the following:

$$
\begin{aligned}
& 10^{\text {pos.power }} \Rightarrow \text { big number } \\
& 10^{\text {neg.power }} \Rightarrow \text { small number }
\end{aligned}
$$

D. Multiplying and Dividing Scientific Notation

Here you multiply/divide the "base numbers" like normal. Do the powers of 10 separate using the properties of exponents.

Example:

$$
\begin{gathered}
\text { Simplify } \frac{\left(5.2 \times 10^{-6}\right)\left(6 \times 10^{3}\right)}{1.3 \times 10^{-12}} \\
\frac{(5.2)(6)}{1.3} \times \frac{10^{-6} \cdot 10^{3}}{10^{-12}} \\
24 \times \frac{10^{-3}}{10^{-12}} \\
24 \times 10^{9}
\end{gathered}
$$

Move the decimal once to the left (+1 power) to write in scientific notation.
2.4×10^{10}

