1.2A Fractions Review

A. Simplifying

To simplify a fraction, we divide top and bottom by common factors. If we choose the largest (greatest common factor), then we can do it in one step.

Examples:

1. Simplify $\frac{10}{18}$

$$
\frac{10}{18} \xrightarrow[\div 2]{\div 2} \xrightarrow{\frac{5}{9}}
$$

2. Simplify $\frac{16}{24}$

$$
\frac{16}{24} \xrightarrow[\div 4]{\div 4} \frac{4}{6} \xrightarrow[\div 2]{\div 2} \frac{2}{3}
$$

If you divide by the $\mathrm{GCF}=8$, you can do it one step: $\frac{16}{24} \underset{\div 8}{\div 8} \underset{3}{3}$

B. Multiplying and Dividing I

1. To multiply: multiply numerators and multiply denominators; parentheses mean multiply
2. To divide: invert second (reciprocal) and multiply; fraction bar means divide

Examples:

1. Find $\left(\frac{2}{13}\right)\left(\frac{3}{5}\right)$

$$
\left(\frac{2}{13}\right)\left(\frac{3}{5}\right)=\frac{2}{13} \cdot \frac{3}{5}=\frac{6}{65}
$$

2. Find $\frac{6}{5} \div \frac{7}{3}$

$$
\frac{6}{5} \div \frac{7}{3}=\frac{6}{5} \cdot \frac{3}{7}=\frac{18}{35}
$$

3. Find $\frac{\frac{7}{2}}{\frac{3}{5}}$

$$
\frac{\frac{7}{2}}{\frac{3}{5}}=\frac{7}{2} \div \frac{3}{5}=\frac{7}{2} \cdot \frac{5}{3}=\frac{35}{6}
$$

Note: In algebra, we leave fractions improper. We don't convert to mixed numbers.

C. Multiplying and Dividing II

Sometimes we need to simplify after multiplying. A shortcut is to cancel first. We can cancel common factors between any numerator and any denominator when multiplying.

Note: Never cancel horizontally; only cancel vertically or diagonally.

Examples:

1. Find $\frac{2}{3} \cdot \frac{9}{10}$

$$
\frac{2}{3} \cdot \frac{9}{10}=\frac{\frac{1}{3}}{\frac{7}{3}} \cdot \frac{3}{10} \cdot \frac{3}{50}=\frac{3}{5}
$$

2. Find $\frac{10}{18} \div \frac{5}{9}$

$$
\frac{10}{18} \div \frac{5}{9}=\frac{10}{18} \cdot \frac{9}{5}=\frac{\substack { \frac{1}{2} \\
\frac{10}{18} \\
\begin{subarray}{c}{8{ \frac { 1 } { 2 } \\
\frac { 1 0 } { 1 8 } \\
\begin{subarray} { c } { 8 } } \\
{1}}{\frac{9}{5}}=\frac{1}{1}=1
$$

D. Adding and Subtracting I

With the same denominators, we add/subtract numerators. Then simplify.

Examples:

1. Find $\frac{5}{3}+\frac{2}{3}$

$$
\frac{5}{3}+\frac{2}{3}=\frac{7}{3}
$$

2. Find $\frac{5}{6}-\frac{1}{6}$

$$
\frac{5}{6}-\frac{1}{6}=\frac{4}{6} \xrightarrow[\vdots]{\div 2} \frac{2}{3}
$$

3. Find $\frac{9}{2}+\frac{3}{2}$

$$
\frac{9}{2}+\frac{3}{2}=\frac{12}{2} \xrightarrow[\div 2]{\div 2} \frac{6}{1}=6
$$

E. Least Common Multiple

Goal: Find the smallest number that is a multiple of two numbers

Method 1: (the second method will come later in the course)

Take the larger number and keep adding it to itself until it is a multiple of the smaller number.

Examples:

1. Find $\ell_{\mathrm{cm}}(6,8)$
$8,16,24$ (STOP: 24 is a multiple of 6)
2. Find $\ell_{\mathrm{cm}}(10,8)$

$$
10,20,30,40 \text { (STOP: } 40 \text { is a multiple of } 8 \text {) } 40
$$

F. Adding and Subtracting II

With different denominators:

1. Find the LCM of the denominators (called the least common denominator or LCD)
2. Rewrite each fraction with the LCD as the new denominator. Do this by multiplying top and bottom of the original fraction by the "needed" number.
3. Now add/subtract as in Part D.

Examples:

1. Find $\frac{1}{6}+\frac{3}{8}$

First find $\ell_{c m}(6,8)$:
$8,16,24$ (STOP: 24 is a multiple of 6), $\operatorname{so} \mathrm{Ccm}(6,8)=24$

Now rewrite each fraction with 24 as the new denominator:

$$
\frac{1}{6}+\frac{3}{8} \leadsto \underset{6 \cdot 4}{\frac{24}{24}}+\underset{8 \cdot 3}{\frac{24}{24}} \leadsto \frac{1 \cdot 4}{24}+\frac{3 \cdot 3}{24}=\frac{4}{24}+\frac{9}{24}=\frac{13}{24}
$$

Note: For the first fraction, we multiplied 6 by 4 to get 24 , so that is what we multiply the top by. For the second fraction, we multiplied 8 by 3 to get 24 , so that is what we multiply the top by.
2. Find $\frac{3}{2}-\frac{1}{3}$

First find $\ell_{\mathrm{c} m}(2,3)$:

$$
3,6 \text { (STOP: } 6 \text { is a multiple of } 2 \text {), so } \ell_{\mathrm{cm}}(2,3)=6
$$

Now rewrite each fraction with 6 as the new denominator:

$$
\frac{3}{2}-\frac{1}{3} \leadsto \frac{-}{2 \cdot 3}-\frac{\overline{6}}{2 \cdot 2} \leadsto \frac{3 \cdot 3}{6 \cdot 3}-\frac{1 \cdot 2}{6 \cdot 2}=\frac{9}{6}-\frac{2}{6}=\frac{7}{6}
$$

3. Find $\frac{7}{30}+\frac{1}{14}$

First find $\ell_{\mathrm{cm}}(30,14)$:

$$
30,60,90,120,150,180,210
$$

(STOP: 210 is a multiple of 14), so $\mathrm{lcm}_{\mathrm{cm}}(14,30)=210$

Now rewrite each fraction with 210 as the new denominator:

